• Title/Summary/Keyword: adaptive design domain

Search Result 68, Processing Time 0.025 seconds

Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation Wavelet-Galerkin Method

  • Seo Jeong Hun;Earmme Taemin;Jang Gang-Won;Kim Yoon Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.110-124
    • /
    • 2006
  • The multi scale wavelet-Galerkin method implemented in an adaptive manner has an advantage of obtaining accurate solutions with a substantially reduced number of interpolation points. The method is becoming popular, but its numerical efficiency still needs improvement. The objectives of this investigation are to present a new numerical scheme to improve the performance of the multi scale adaptive wavelet-Galerkin method and to give detailed implementation procedure. Specifically, the subdomain technique suitable for multiscale methods is developed and implemented. When the standard wavelet-Galerkin method is implemented without domain subdivision, the interaction between very long scale wavelets and very short scale wavelets leads to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large-sized problems. The performance of the developed strategy is checked in terms of numerical costs such as the CPU time and memory size. Since the detailed implementation procedure including preprocessing and stiffness matrix construction is given, researchers having experiences in standard finite element implementation may be able to extend the multi scale method further or utilize some features of the multiscale method in their own applications.

Denoising Based on the Adaptive Lifting

  • Lee, Chang-Soo;Yoo, Kyung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.13-19
    • /
    • 1999
  • This paper introduces an adaptive wavelet transform based on the lifting scheme, which is applied to signal denoising. The wavelet representation using orthogonal wavelet bases has received widespread attention. Recently the lifting scheme has been developed for the construction of biorthogonal wavelets in the spatial domain. Wavelet transforms are performed through three stages: the first stage or Lazy wavelet splits the data into two subsets, even and odd, the second stage calculates the wavelet coefficients (highpass) as the failure to interpolate or predict the odd set using the even, and the third stage updates the even set using neighboring odd points (wavelet coefficients) to compute the scaling function coefficients (lowpass). In this paper, we adaptively find some of the prediction coefficients for better representation of signals and this customizes wavelet transforms to provide an efficient framework for denoising. Special care has been given to the boundaries, where we design a set of different prediction coefficients to reduce the prediction error.

  • PDF

An Adaptive Tuned Heave Plate (ATHP) for suppressing heave motion of floating platforms

  • Ruisheng Ma;Kaiming Bi;Haoran Zuo
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.283-299
    • /
    • 2023
  • Structural stability of floating platforms has long since been a crucial issue in the field of marine engineering. Excessive motions would not only deteriorate the operating conditions but also seriously impact the safety, service life, and production efficiency. In recent decades, several control devices have been proposed to reduce unwanted motions, and an attractive one is the tuned heave plate (THP). However, the THP system may reduce or even lose its effectiveness when it is mistuned due to the shift of dominant wave frequency. In the present study, a novel adaptive tuned heave plate (ATHP) is proposed based on inerter by adjusting its inertance, which allows to overcome the limitation of the conventional THP and realize adaptations to the dominant wave frequencies in real time. Specifically, the analytical model of a representative semisubmersible platform (SSP) equipped with an ATHP is created, and the equations of motion are formulated accordingly. Two optimization strategies (i.e., J1 and J2 optimizations) are developed to determine the optimum design parameters of ATHP. The control effectiveness of the optimized ATHP is then examined in the frequency domain by comparing to those without control and controlled by the conventional THP. Moreover, parametric analyses are systematically performed to evaluate the influences of the pre-specified frequency ratio, damping ratio, heave plate sizes, peak periods and wave heights on the performance of ATHP. Furthermore, a Simulink model is also developed to examine the control performance of ATHP in the time domain. It is demonstrated that the proposed ATHP could adaptively adjust the optimum inertance-to-mass ratio by tracking the dominant wave frequencies in real time, and the proposed system shows better control performance than the conventional THP.

Development of a Adaptive Knowledge Base Object Model for Intelligent Tutoring System (지능형 교육 시스템을 위한 적응적 지식베이스 객체 모형 개발)

  • Kim Yong-Beom;Kim Yung-Sik
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.421-428
    • /
    • 2006
  • Intelligent Tutoring System(ITS), which offers individualized learning environment that consider many learners' variable, is realized by the effective alternative to take the place of domain expert. Accordingly, research on Learning Companion System(LC) is currently noticing. However, to develop LCS which applies effective interaction, it is necessary to combine several LCs, and personalized knowledge base have to be made first. Therefore, in this paper, we propose the 'Knowledge Base Object Medel', which is based on connectionist' in cognition structure, represents learner's knowledge to self-learnig object, and grows adaptive object by proprietor, verify the validity. This model lays the groundwork for design of personalized knowledge base, offers clue to development of adaptive ITS using knowledge base object.

A Study on the Design of Cross-Polarization Interference Canceler for Digital Radio Relay System with Co-Channel Dual Polarization (동일 채널 이중편파를 적용하는 디지털 무선 중계장치의 직교편파간섭제거기 설계에 관한 연구)

  • 서경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.225-236
    • /
    • 2002
  • In this paper, to counteract a cross-polarization interference caused by co-channel dual polarization technique of digital radio relay system(DRRS), we analyze the theoretical model and digital design of cross-polarization interference canceller(XPIC). In addition a complex adaptive time domain equalizer(ATDE) is designed using a finite impulse response filter, and the structure of XPIC and its control method are also illustrated including ATDE. Our computer simulation shows that about 25 dB signature and more than 23 dB XPIC improvement factor can be obtained with XPIC and ATDE. In order to verify the operation of designed XPIC, we review the simulated results in view of tap number, algorithm convergence, system signature, and XPlC improvement factor in connection with 64-QAM DRRS with co-channel dual polarization.

Mesh Reconstruction Using Redistibution of Nodes in Sub-domains and Its Application to the Analyses of Metal Forming Problems (영역별 절점재구성을 통한 격자재구성 및 소성가공해석)

  • Hong, Jin-Tae;Yang, Dong-Yol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.255-262
    • /
    • 2007
  • In the finite element analysis of forming process, objects are described with a finite number of elements and nodes and the approximated solutions can be obtained by the variational principle. One of the shortcomings of a finite element analysis is that the structure of mesh has become inefficient and unusable because discretization error increases as deformation proceeds due to severe distortion of elements. If the state of current mesh satisfies a certain remeshing criterion, analysis is stopped instantly and resumed with a reconstructed mesh. In the study, a new remeshing algorithm using tetrahedral elements has been developed, which is adapted to the desired mesh density. In order to reduce the discretization error, desired mesh sizes in each lesion of the workpiece are calculated using the Zinkiewicz and Zhu's a-posteriori error estimation scheme. The pre-constructed mesh is constructed based on the modified point insertion technique which is adapted to the density function. The object domain is divided into uniformly-sized sub-domains and the numbers of nodes in each sub-domain are redistributed, respectively. After finishing the redistribution process of nodes, a tetrahedral mesh is reconstructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

Topology Optimization of Shell Structures Using Adaptive Inner-Front(AIF) Level Set Method (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.157-162
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, in this regard, an inner-front creation algorithm is proposed. in which the sizes. shapes. positions, and number of new inner-fronts during the optimization process can be globally and consistently identified by considering both the value of a given criterion for inner-front creation and the occupied volume (area) of material domain. To facilitate the inner-front creation process, the inner-front creation map which corresponds to the discrete valued criterion of inner-front creation is applied to the level set function. In order to regularize the design domain during the optimization process, the edge smoothing is carried out by solving the edge smoothing partial differential equation (PDE). Updating the level set function during the optimization process, in the present work, the least-squares finite element method (LSFEM) is employed. As demonstrative examples for the flexibility and usefulness of the proposed method. the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF

Development of Polynomial Based Response Surface Approximations Using Classifier Systems (분류시스템을 이용한 다항식기반 반응표면 근사화 모델링)

  • 이종수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

Multi-Point Aerodynamic Shape Optimization of Rotor Blades Using Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.66-78
    • /
    • 2007
  • A multi-point aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference. The 'objective function and the sensitivity were obtained as a weighted sum of the values at each design point. The blade section contour was modified by using the Hicks-Henne shape functions. The mesh movement due to the blade geometry change was achieved by using a spring analogy. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized based on a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the wake. Applications were made to the aerodynamic shape optimization of the Caradonna-Tung rotor blades and the UH-60 rotor blades in hover.

Design of 2-D MA FIR Filters for Channel Estimation in OFDM Systems

  • Park, Ji-Woong;Lee, Seung-Woo;Lee, Yong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.234-237
    • /
    • 2003
  • The accuracy of channel estimation significantly affects the performance of coherent OFDM receiver. It is desirable to employ a good channel estimator while requiring low implementation complexity. In this paper, we propose a channel estimator that employs a simple two-dimensional (2-D) moving average (MA) filter as the channel estimation filter. The optimum tap size of the 2-D MA FIR filter is analytically designed in the time and frequency domain in association with the channel condition and pilot signal to interference power ratio. The analytic results can be applied to the design of adaptive channel estimator. Finally, the performance of the proposed channel estimator is verified by computer simulation.

  • PDF