• Title/Summary/Keyword: adaptive design

Search Result 2,253, Processing Time 0.033 seconds

Adaptive Black Band Insertion for Improving Motion Quality

  • Lin, Hsiang-Tan;Yen, Shih-Chieh
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1322-1325
    • /
    • 2009
  • Adaptive black band insertion improve blur phenomenon that caused by hold type issue of LCD, the approach regulate charge time by OE signal to control black inserted ratio, and the charge time be modified according the motion quantity of displaying content.

  • PDF

The Study of Expression Methods in Modern Fashion Design from the Perspective of the Theory of Formative Form (조형형태론적 관점에서 살펴본 현대 패션디자인의 표현방법 연구)

  • Kwon, Gi-Young
    • Journal of the Korean Home Economics Association
    • /
    • v.47 no.3
    • /
    • pp.45-54
    • /
    • 2009
  • The purpose of this study is to understand the meanings of formative methods (re-creative expressions, abstractive expressions, conceptual expressions, and adaptive expressions) as they are adapted to fashion design. Re-creative expression is the representation of real objects from nature or the environment, sometimes in a humorous or surrealistic way. Abstractive expression is the use of reconstructed forms extracted from the basic characteristics of natural things, which take on variety of appearances based on the designer’'s creativity and imagination. Conceptual expression refers to the representation of ideas, concepts, and other products of the human mind. And, adaptive expression is a method of design that is focused on function driving the form of clothing. Modern fashion design is a fluid hybrid of these various types of expression that serves as an extension of the designers’' aesthetic values.

Simple Adaptive Position Control of a Hydraulic Cylinder-load System Driven by a Proportional Directional Control Valve (비례 방향제어 밸브에 의하여 구동되는 유압실린더-부하계의 단순 적응 위치제어)

  • Cho, Seung-Ho;Lee, Min-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.936-941
    • /
    • 2011
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained and used for controller design. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.

Integrated Guidance and Control Design Based on Adaptive Neural Network for Unpowered Air Vehicle (무추력 비행체를 대상으로 한 적응 통합 유도제어기 설계)

  • Kim, Boo-Min;Sung, Duck-Yong;Sung, Jea-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • The guidance controller of the conventional aircraft consists of inner-loop (autopilot) and outer-loop (guidance). If the guidance controller can be designed as an integrated guidance and control (IGC), the various advantages exist. The integrated guidance and control formulation can compensate for the effect of autopilot lag. An integrated approach also helps avoid the iterative procedure involved in tuning the guidance and autopilot subsystems, if designed separately. Integrated design is also less susceptible to saturation and stability problems. This paper presents an approach to IGC design for the unpowered air vehicle with the only flaperon using a combination of adaptive output feedback inversion and backstepping techniques. Adaptive neural networks are trained online with available measurements to compensate for unmodeled nonlinearities in the design process.

Neural-networks-based Disturbance Observer and Tracker Design in the Presence of Unknown Control Direction and Non-affine Nonlinearities (미지의 제어 방향성과 비어파인 비선형성을 고려한 신경망 기반 외란 관측기와 추종기 설계)

  • Kim, Hyoung Oh;Yoo, Sung Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.666-671
    • /
    • 2017
  • A disturbance-observer-based adaptive neural tracker design problem is investigated for a class of perturbed uncertain non-affine nonlinear systems with unknown control direction. A nonlinear disturbance observer (NDO) design methodology using neural networks is presented to construct a tracking control scheme with the attenuation effect of an external disturbance. Compared with previous control results using NDO for nonlinear systems in non-affine form, the major contribution of this paper is to design a NDO-based adaptive tracker without the sign information of the control coefficient. The stability of the closed-loop system is analyzed in the sense of Lyapunov stability.

Design of Adaptive Regulator for a Nonlinear Uncertain System (불확실성을 갖는 비선형 시스템의 적응 제어기 설계)

  • Jin, Ju-Wha;Yu, Kyung-Tak;Son, Young-Ik;Seo, Jin-Heo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF

An Adaptive Optimization Algorithm Based on Kriging Interpolation with Spherical Model and its Application to Optimal Design of Switched Reluctance Motor

  • Xia, Bin;Ren, Ziyan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1544-1550
    • /
    • 2014
  • In this paper, an adaptive optimization strategy utilizing Kriging model and genetic algorithm is proposed for the optimal design of electromagnetic devices. The ordinary Kriging assisted by the spherical covariance model is used to construct surrogate models. In order to improve the computational efficiency, the adaptive uniform sampling strategy is applied to generate sampling points in design space. Through several iterations and gradual refinement process, the global optimal point can be found by genetic algorithm. The proposed algorithm is validated by application to the optimal design of a switched reluctance motor, where the stator pole face and shape of pole shoe attached to the lateral face of the rotor pole are optimized to reduce the torque ripple.

Adaptive Output Feedback Control of Uncertain Nonlinear Systems with Time-Varying Parameters (시변 파라메터를 갖는 불확실 비선형 시스템의 적응 출력궤환 제어)

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1943-1945
    • /
    • 2001
  • In this paper, we present an adaptive output feedback control scheme for a class of uncertain nonlinear output-feedback form with time-varying parameters to which adaptive observer backstepping technique may not be applicable directly. In observer design, with the introduction of design function, we can deal with time-varying parameters in a very effective way. By the presented scheme, estimation error can be tuned to a desired small region around the origin via the design constants. Consequently, the observer with the presented design functions and the backstepping methodology achieve a robust regulation of the output tracking error while maintaining boundedness of all the signals and states.

  • PDF

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF