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An Adaptive Optimization Algorithm Based on Kriging Interpolation 
with Spherical Model and its Application to Optimal Design  

of Switched Reluctance Motor 
 
 

Bin Xia*, Ziyan Ren*,**, Yanli Zhang** and Chang-Seop Koh† 
 

Abstract – In this paper, an adaptive optimization strategy utilizing Kriging model and genetic 
algorithm is proposed for the optimal design of electromagnetic devices. The ordinary Kriging assisted 
by the spherical covariance model is used to construct surrogate models. In order to improve the 
computational efficiency, the adaptive uniform sampling strategy is applied to generate sampling 
points in design space. Through several iterations and gradual refinement process, the global optimal 
point can be found by genetic algorithm. The proposed algorithm is validated by application to the 
optimal design of a switched reluctance motor, where the stator pole face and shape of pole shoe 
attached to the lateral face of the rotor pole are optimized to reduce the torque ripple. 
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1. Introduction 
 
The target of inverse problem in electromagnetic field 

is to implement design optimization of electromagnetic 
device, so that the required performance or parameters 
will be satisfied. The stochastic optimization algorithms 
can search the global optimum. However, these stochastic 
algorithms cannot avoid drawbacks such as huge 
computational cost and low rate of convergence. Recently, 
stochastic global optimization algorithms combined with 
surrogate performance models have been concerned [1-3]. 
In these optimization strategies, the objective function is 
evaluated indirectly by interpolated functions. In general, 
the approximated function should have low computational 
cost, high accuracy, and very good interpolation performance. 
Kriging, a spatial statistical technique with the precise 
interpolation and prediction features, is popular for the 
electromagnetic design optimization.  

Kriging model predicts the objective value at the 
unknown point by computing the weighted average of 
available known samples. There are some key components 
such as drift function, covariance function, neighbor 
structure, and variance of interpolation errors. According 
to the usage of different drift function, Kriging models 
can be classified into Simple Kriging (SK), Ordinary 
Kriging (OK), and Universal Kriging (UK) [4]. The SK 
with a drift function of zero constant is the most basic 
form. Ordinary Kriging with a nonzero drift function is 

compatible with a stationary model. Due to its low 
computational cost and accurate interpolation capability to 
replace an objective function to assist optimization search 
[5], the OK is the most popular one among three Kriging 
models. The UK, the general Kriging model, is a non-
stationary geostatistical method, where the drift function is 
modeled as a general linear function of coordinates. 

In this paper, a global optimization strategy employing 
multiple iterations and gradual refinement is developed, 
in which the Ordinary Kriging algorithm with spherical 
covariance model is used. The genetic algorithm is applied 
for parameter identification of spherical model and for 
searching the optimum of the approximated function. The 
proposed optimization method has been verified through 
analytic function and application to the optimal design of 
3-phase 6/4 switched reluctance motor. 

 
 

2. Kriging Methodology 
 

2.1 Review of ordinary Kriging model 
 
Suppose N sample points with corresponding observed 

values Z(X1),…, Z(XN), and then the function value Z*(X) 
at the unknown point X can be estimated through a linear 
combination of the observed values as follows: 
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where coefficients λi (i=1,…, N) are Kriging weights. 

In Kriging models, the best linear unbiased predictor is 
used to select coefficients λ. Finally, the OK equations are 
formed by Lagrange multipliers (μ) as follows [6]: 
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Therefore, the Kriging weights λ can be obtained from 

(2-a) and (2-b). 
 

2.2. Covariance function 
 
The values of covariance function are not defined yet, 

but values of some discrete covariance function can be 
calculated based on sampling points. According to the 
distance h between every two points, corresponding 
discrete covariance value C*(h) is obtained as follows: 
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where N(h) is the number of pair of points with a distance 
h. The series of h and C*(h) will be used to fit the ideal 
covariance model. 

In this paper, the spherical model will be compared with 
the thin elastic plates model, and the expressions are shown 
as follows: 

 
2.2.1 Thin Elastic Plates Model (TEPM): 
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2.2.2 Spherical Model (SM):  
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where C0 is nugget, C0+C is sill and a is range [7]. They 
are unknown parameters, which can be identified by the 
genetic algorithm (GA). 

 
2.3. Parameter identification of spherical model 

 
Firstly, in GA, the parameters such as initial population 

size, crossover probability, mutation probability and 
terminate condition should be defined. Encode the three 
parameters C0, C, and a with 6 bit binary number for each 
parameter. Then, each group parameter is a chromosome 
with 18 lengths. The chromosome encoding method is 
shown in Fig. 1. Each parameter has 26 codes and decoding 
expression is given as follows: 
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where x is decimal value and its range is between Umin and 
Umax, bi is the i-th binary number between 0 and 1.  

Secondly, according to statistical theory, the objective 
function is formulated as follows: 
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where C*(h) is a discrete covariance value and C(h) is a fit 
covariance value in spherical model.  

With the help of the selection, crossover, and mutation 
operators, the better generation will be selected for next 
iteration. In this paper, the better individual is chosen by 
fitness-proportionate selection, and the expression is: 
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where pi

select is the i-th selective probability, m is the 
population size, fi is fitness value of the i-th individual. 

Then, three points crossover algorithm is used with a 

Code of aCode of CCode of C0

…x1 x2 x6 …y1 y2 y6 …z1 z2 z6

 

Fig. 1. Chromosome encoding 
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Fig. 2. Three-point crossover 
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Fig. 3. Flow chart of parameter estimation 
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given crossover probability Pc=0.8 as shown in Fig. 2. In 
each parameter chromosome fragment, one point is 
randomly inserted and crossover behind the gene of the 
point. In addition, the mutation is operated by a given 
probability Pm=0.04. Finally, if the algorithm satisfies the 
convergence condition as defined in (9), terminate and 
output the result. Otherwise, repeat fitness calculation and 
genetic operation.  
 
 4

max max( )/ 10avgf f f -- <  (9) 
 
In (9), fmax and favg are maximum and average fitness 

values, respectively. The flowchart of parameter estimation 
is shown in Fig. 3. 

 
 

3. Gradual Refinement Assisted Global  
Optimization Algorithm 

 
As it is known, for a real electromagnetic problem, 

the objective function used for optimization is generally 
implicit and related with finite element performance 
analysis. Therefore, in order to reduce computational 
efficiency and improve convergence, during optimization 
process, the fitness value at unknown design point is 
approximated by the Kriging model. 

In the optimization strategy, the uniform sampling 
technique is used to obtain sample points in the design 

space. Based on the optimal result obtained from previous 
iteration, the design space is reduced and new sampling 
points of current iteration are gradually inserted to 
approximate the objective function, so that the efficiency 
and simulation accuracy will be improved. The proposed 
optimization algorithm is summarized as follows: 

Step 1:  Define the initial design space and generate 
initial sampling points by uniform sampling strategy in the 
whole design space.  

Step 2:  Carry out performance analysis of each sampling 
point and obtain corresponding objective values. 

Step 3:  Construct the response surface by OK model. 
Step 4:  Find the current optimal point by GA, and check 

convergence condition, stop and output the result if 
converged.  

Step 5:  Reduce design space by adaptive factor of 0.618 
around the current optimal point [2].  

Step 6:  Uniformly generate new sampling points in the 
reduced design space, and go to Step 2. 

 
In the algorithm, the iteration repeats until the optimal 

point converges, and the converged global optimal point is 
considered as a true optimal point. The flow chart is shown 
in Fig. 4. 

 
 

4. Numerical Optimization Results  
 

4.1. Analytic function 
 
A two-dimensional analytic function [8] is used to check 

the efficiency and validity of the proposed algorithm. The 
optimization model is formulated as follows: 
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where the global optimum is (x1=2.287, x2=2.287) and 
corresponding objective value is 11.81. 

Firstly, three global optimal parameters are found by GA. 
C0=35.127, C=812.698 and a=4.01587. So the spherical 
model is confirmed. 

Fig. 5 shows the constructed response surface by Kriging 
model and the distribution of sampling points at each 
iteration. At the initial iteration, 25 sample points are 
obtained by the uniform sampling in the whole design 
space, and corresponding response values are calculated. 
Then the Kriging response surface is constructed, the 
optimum (2.40476, 2.21429) with F(x1, x2) =11.4789 is 
found by GA, as shown in Fig. 5(a). Then, the design space 
is adaptively reduced and is sampled as shown in Fig. 5(b) 
and Fig. 5(c). After three iterations, a converged optimal 
point (2.27009, 2.29018) with F(x1, x2) =11.8001 is 
obtained. 

Calculate discrete covariance
and fit the model

Parameter identification

Calculate coefficient matrix
Solve Kriging equations

Construct the response surface

Obtain Kriging coefficients

 
(a) Construct response surface by OK 

Yes

No

Uniformly generate 
initial sampling points

Performance analysis

Construct response 
surface by OK

Find the current 
optimum by GA

Converged?

Adaptively reduce 
design space

Regenerate samples
in reduced space

stop  
(b) Multiple iterations and gradual refinement 

Fig. 4. Flow chart of the proposed global optimization 
algorithm 
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Comparison with average relative error (ARE) for 
response surface between SM and TEPM, and the optimal 
solution obtained by direct searching of GA (DS-GA) is 
shown in Table 1. It is obvious that the SM and DS-GA 
show a higher accuracy than TEPM, but DS-GA needs 
much expensive calculating time. For further validation of 
the model accuracy, we examine two metrics, ARE and 

root mean squared error (RMSE) for different number of 
sampling points in SM are defined as follows: 
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where M is the number of test points, Z*(Xi) and Z(Xi) are 
estimated and true value of the i-th test point, respectively.  

Figs. 6 and 7 show ARE and RMSE for different number 
of sampling points. From the results, the estimation 
errors of both the ARE and RMSE decrease as the number 
of sample points increases, cross-validation becomes 
more reliable, resulting in a higher accuracy of Kriging 
interpolation. This verifies Kriging’s claim to be a very 

Table 1. Comparison of different covariance models a 

Model b x1 x2 F(x) ARE(%) Fun. calls 
TEPM 2.34621 2.40177 11.7166 3.55901 75 

SM 2.27009 2.29018 11.8001 1.06884 75 
DS-GA c 2.285 2.282 11.797 - 2000 

a-The results are average values from 100 runs. 
b-the number of sample points for each iteration is 25. 
c-DS-GA means the GA is directly applied to (10). 
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(c) The third iteration 

0

2

4

0

2

4
5

10

15

 

x1x2
 

F

6

7

8

9

10

11

 
(d) Kriging response surface of the final iteration 

Fig. 5. Optimization process of analytic function 
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flexible for highly nonlinear functions. For the same 
sampling points, the spherical model with parameters 
estimation is better, and the optimal solution is closer to the 
true value. 

 
4.2 Electromagnetic application — Shape optimal 

design of the switched reluctance motor 
 
As an electromagnetic application, a 3-phase 6/4 pole 

switched reluctance motor (SRM) is optimized for 
reducing the torque ripple. Each stator pole has a 
concentrated winding, and each phase consists of two coils 
wounded on opposite poles and connected in series. The 
rotor has neither the winding nor the permanent magnet. 
Because of the doubly salient pole structure of SRM, the 
torque ripple is produced and causes vibration and noise 
[9-10].  

In SRM, the exciting current and the developed torque 
are decided by the following equations: 

 ( ) , , , .k k k k kV R i d L i dt k a b c= + =  (13) 

 21
2 k kk

T i dL d= qå  (14) 

 
where Vk, Rk, Lk, and ik are separately exciting voltage, 
resistance, inductance, and exciting current of a phase, 
respectively. T is the Torque. 

From the respective of optimizing the torque through 
changing the inductance, the air-gap between the stator and 
rotor poles is selected as the most sensitive parameter. Fig. 
8 shows a design parameter θ to control the air-gap when 
the rotor moves counter-clockwise. Even if the torque 
ripple from a phase is sufficiently reduced by optimizing 
the stator pole shape, the SRM still may have a torque 
ripple. A pole shoe is suggested to be attached to the lateral 
side of the rotor pole as shown in Fig. 9. Thus, the pole 
face shape of stator (θ) and the pole shoe of rotor (α) are 
chosen as two design variables [11]. 

To find two optimal parameters by the proposed 
algorithm, the optimization target is defined as follows: 

 

 
max minMinimize

Subject to 0 4
0.5 4.5

objF T T= -

° £ q £ °
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 (15) 

 
where Tmax and Tmin are the maximum and minimum 
Torque, respectively. 

In this optimization algorithm, the objective function 
values of each sampling point are obtained by using finite 
element analysis (FEA). The three best parameters of the 
spherical model are obtained by using GA as C0=1.8889E-
3, C=2.11111E-3 and a=4.71429. The global optimal point 
is obtained after three iterations, and through multiple 
iterations and gradual refinement, the final 75 sample 
points are used to construct a Kriging response surface. 
After optimization, the optimal design variables are found 
θ = 2.90298°, α = 4.38571°, and the corresponding torque 
ripple is reduced to 3.8724 N·m from the initial one of 
10.90 N·m while the average torque is increased from 
5.1451 N·m to 5.2259 N·m. Fig. 10 shows the comparison 
of the torque ripples between the initial and the optimized 
pole shapes.  

 
 

5. Conclusion 
 
In this paper, a global optimization strategy employing 

multiple iterations and gradual refinement is proposed. 
The OK model with spherical covariance model and 
TEPM is used as interpolation function to approximate 
the objective function. Then GA can successfully estimate 
three parameters of spherical model and find the 
optimal point based on the surrogate model. Through the 
applications to numerical examples, the proposed OK 
with spherical model is proven to give a better optimal 

 
Fig. 8. Design parameter of the air-gap 

 

 
Fig. 9. The pole shoe of rotor 

 

 
Fig. 10. Comparison of the torque between initial model 

and optimized one 
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solution than that with the thin elastic plate model, and 
speed up the optimization algorithm to search the optimal 
design than the direct searching of GA. Our proposal to 
obtain Ordinary Kriging model for reducing computational 
cost opens new possibilities in electromagnetic fields to 
investigate optimization problems under parameter 
unconstraint. In multidimensional problems and sensitivity 
analysis of optimization problems, it should be solved by 
the proposed optimization algorithm. Our future research 
will be in this direction. 
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