• 제목/요약/키워드: adaptive control technique

검색결과 513건 처리시간 0.022초

덕트에서 온라인 적응 알고리듬을 이용한 능동소음제어 (Active noise control with on-line adaptive algorithm in a duct system)

  • 김흥섭;홍진석;오재응
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1332-1338
    • /
    • 1997
  • In the case of the transfer function for the secondary path is dependent on time, the on-line method which can model it is continuously must be applied to the active noise control technique. And the adaptive random noise technique among the on-line methods is effective in the narrow-band control. In this method, the signal to noise ratio between random noise for modeling and primary noise is low. Therefore, the estimations of transfer function will be prone to inaccuracies and the convergence time will be too long. Such imperfections will have an influence upon the performance of an active noise controller. In this study, t enhance the signal to noise ratio, the on-line method that is combined the conventional adaptive random noise technique and the adaptive line enhancer, is proposed. By using proposed on-line method, a rigorous system identification and control of primary noise have been implemented.

적응 입출력 선형화 기법을 이용한 Brushless DC Motor의 강인한 속도 제어 (Robust Speed Control of Brushless DC Motor Using Adaptive Input-Output Linearization Technique)

  • 김경화;백인철;문건우;윤명중
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.89-96
    • /
    • 1997
  • A robust speed control scheme for a brushless DC(BLDC) motor using an adaptive input-output linearization technique is presented. By using this technique, the nonlinear motor model can be linearized in Brunovski canonical form, and the desired speed dynamics can be obtained based on the linearized model. This control technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions. For the robust output response, the controller parameters will be estimated by a model reference adaptive technique where the disturbance torque and flux linkage are estimated. The adaptation laws are derived by the Popov's hyperstability theory and positivity concept. The proposed control scheme is implemented on a BLDC motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative experiments.

  • PDF

Adaptive Input-Output Linearization Technique for Robust Speed Control of Brushless DC Motor

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Kim, Hyun-Soo;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권3호
    • /
    • pp.113-122
    • /
    • 1997
  • An adaptive input-output linearization technique for a robust speed control of a brushless C(BLDC) motor is presented. By using this technique, the nonlinear moro model can be effectively linearized in Brunovski canonical form, an the desired speed dynamics can be obtained based on the linearized model. This control technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions caused by the incomplete linearization. for the robust output response, the controller parameters will be estimated by a model reference adaptive technique where the disturbance torque and flux linkage are estimated. The adaptation laws are derived by the Popov's hyperstability theory nd positivity concept. The proposed control scheme is implemented on a BLDC motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative simualtions and experiments.

  • PDF

적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어 (Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network)

  • 고재섭;최정식;이정호;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

적응형 필터링 기법을 이용한 회전형 시선제어시스템의 진동 저감 및 영상 주파수노이즈 저감 기법 (An Adaptive Filtering Technique for Vibration Reduction of a Rotational LOS Control System and Frequency Noise Reduction of an Imaging System)

  • 김병학;김민영
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1014-1022
    • /
    • 2014
  • In mechatronic systems using electric signals to drive control systems, driving signals including the frequency band of the unwanted signals, such as resonant frequencies and noise frequencies, can affect the accuracy of the controlled system and can cause serious damage to the system due to the resonance phenomenon of the mechatronic system. An LOS (Line of Sight) control unit is used to automatically rotate the gimbal system with a video imaging system generally mounted on modern aerial vehicles. However, it still suffers from natural frequency variation problems due to variations of operational temperature. To prevent degradation in performance, this paper proposes an adaptive filtering technique based on real-time noise analysis and adaptive notch-filtering for LOS control systems, and verifies how our proposed method maintains the LOS stabilization performance. Additionally, this filtering technique can be applied to the image noise filtering of the video imaging system. It is designed to reduce image noises generated by switching circuits or power sources. The details of design procedures of the proposed filtering technique and the experiments for the performance verification are described in this paper.

An Estimation Approach to Robust Adaptive Control of Uncertain Nonlinear Systems with Dynamic Uncertainties

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.54-67
    • /
    • 2003
  • In this paper, a novel estimation technique for a robust adaptive control scheme is presented for a class of uncertain nonlinear systems with a general set of uncertainty. For a class of introduced more extended semi-strict feedback forms which generalize the systems studied in recent years, a novel estimation technique is proposed to estimate the states of the fully nonlinear unmodeled dynamics without stringent conditions. With the introduction of powerful functions, the estimation error can be tuned to a desired small region around the origin via the estimator parameters. In addition, with some effective functions, a modified adaptive backstepping for dynamic uncertainties is presented to drive the output to an arbitrarily small region around the origin by an appropriate choice of the design parameters. With our proposed schemes, we can remove or relax the assumptions of the existing results.

Adaptive Input-Output Linearization Technique of Interior Permanent Magnet Synchronous Motor with Specified Output Dynamic Performance

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Moon, Gun-Woo;Lee, Dae-Sik;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.58-66
    • /
    • 1996
  • An adaptive input-output linearization technique of an interior permanent magnet synchronous motor with a specified output dynamic performance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive technique where the stator resistance and the magnitude of flux linkage can be estimated with the current dynamic model and state observer. Using these estimated parameters, the linearizing control inputs are calculated. With these control inputs, the input-output linearization is performed and the load torque is estimated. The adaptation laws are derived by the Popov's hyperstability theory and the positivity concept. The robustness and the output dynamic performance of the proposed control scheme are verified through the computer simulations.

  • PDF

모터 동역학식을 고려한 유연 연결 로봇의 간단한 적응 제어에 관한 연구 (A Study on Simple Adaptive Control of Flexible-Joint Robots Considering Motor Dynamics)

  • 유성진;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1103-1109
    • /
    • 2008
  • Since the flexible joint robots with motor dynamics are represented by the fifth-order nonlinear sγstem, it is difficult and complex to design the controller for electrically driven flexible-joint (EDFJ) robots. In this paper, we propose a simple adaptive control method to solve this problem. It is assumed that the model uncertainties of the robots dynamics, joint flexibility, and motor dynamics are unknown. For the simple control design, the dynamic surface design method is applied, and all uncertainties in the robot and motor dynamics are compensated by using the adaptive function approximation technique. It is proved that all signals in the controlled closed-loop system are uniformly ultimately bounded. Simulation results for three-link EDFJ manipulators are provided to validate the effectiveness of the proposed control system.

신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근 (Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach)

  • 유성진;최윤호;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권12호
    • /
    • pp.518-525
    • /
    • 2006
  • This paper presents the adaptive robust control method for the flight control systems with model uncertainties. The proposed control system can be composed simply by a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the 'explosion of complexity' problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems, and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

역기전력에 무관한 가변 히스테리시스 밴드 전류 제어 (Adaptive Hysteresis Band Current Control Independent of the Back EMFs)

  • 김경화;조관렬;정세교;오동성;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1172-1175
    • /
    • 1992
  • The conventional adaptive hysteresis band current control technique has disadvantages such that on-line calculation of the hysteresis band is very complex, therefore, the adaptive hysteresis band must be stored in the look-up table. In this paper, a new simplified adaptive hysteresis band current control technique with phase decoupling is presented. The adaptive band is independent of the back EMFs. Using this adaptive band and the phase decoupled current error, the modulation frequency is fixed at nearly constant and the PWM inverter has optimal switching pattern.

  • PDF