• Title/Summary/Keyword: adaptive control performance

Search Result 1,569, Processing Time 0.03 seconds

Design of Adaptive Fuzzy Control for High Performance of PMSM Drive (PMSM 드라이브의 고성능 제어를 위한 적응 퍼지제어기의 설계)

  • 정동화;이홍균;이정철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

Adaptive Control based on a ParametricAffine Model for tail-control led Missiles (매개변수화 어파인 모델에 기반한 꼬리날개 제어유도탄의 적응제어)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.2-2
    • /
    • 2000
  • This paper presents an adaptive control against uncertainties in tail-controlled STT (skid-to-Turn) missiles. First, we derive an analytic uncertainty model from a parametricaffine missile model developed by the authors. Based on this analytic model, an adaptive feedbacklinearizing control law accompanied by a sliding model control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme is demonstrated by simulation.

  • PDF

Sliding Mode Control with Fuzzy Adaptive Perturbation Compensator for 6-DOF Parallel Manipulator

  • Park, Min-Kyu;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.535-549
    • /
    • 2004
  • This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator(FAPC) to get a good control performance and reduce the chatter, The proposed algorithm can reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensates the perturbation terms. The compensator computes the control input for compensating unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network(FAN) The weighting parameters of the compensate. are updated by on-line adaptive scheme in order to minimize the estimation error and the estimation velocity error of each actuator. Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust and intelligent routine to get a good control performance. To evaluate the control performance of the proposed approach, tracking control is experimentally carried out for the hydraulic motion platform which consists of a 6-DOF parallel manipulator.

Study on Performance of Adaptive Maximum Torque Per Amp Control in Induction Motor Drives at Light Load Operation

  • Kwon, Chun-Ki;Kong, Yong-Hae;Kim, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.249-255
    • /
    • 2017
  • Efficient operation of induction motor at light loads has been getting wide attention recently because the operating of induction motor at light loads occupies big portion of its operating regions in many applications such as environment friendly vehicle. As one of approaches to improve efficiency, Adaptive Maximum Torque Per Amp (Adaptive MTPA) control for induction motor drives has been proposed to achieve a desired torque with the minimum possible stator current. However, the Adaptive MTPA control was validated only at heavy load where, in general, control scheme tends to perform better than at light loads since the error in measurement of sensors is lower and signal to noise is better. Thus, although the performance of a control scheme is good at rated operating point, its performance at light load is somewhat in doubt in practice. This has led to considerable interest in efficiency of Adaptive MTPA control at light loads. This work experimentally demonstrates performance of Adaptive MTPA control at light loads regardless of rotor resistance variation, thus showing its good performance over all operating conditions.

Characteristics Improvement of Hydraulic Servosystem by Using Generalized Minimum Variance Adaptive Control (일반화최소분산 적응제어를 이용한 유압 서보계의 특성개선에 관한 연구)

  • 박용호;김기홍;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.388-394
    • /
    • 2003
  • Hydraulic system is difficult to obtain a suitable performance due to the nonlinearity load pressure change and system parameter variation. The requirement of control a1gorithm has been complex in order to satisfy the performance. The adaptive control is a control method which is suggested to achieve the control object under the plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp. the adaptive control could keep the characteristics of closed-loop system generally. In this study. a method of combined generalized minimum variance adaptive control (GMVAC) and output error feedback is proposed, in order to solve the problem of non-minimum phase of plant and the vibration and overshoot in initial response. The control performance according to the variation of characteristics of plant is evaluated by changing the supply pressure. The experimental results show the effectiveness of the proposed scheme.

A modified adaptive control method for improving transient performance (적응 제어 시스템의 과도상태 성능 개선을 위한 제어기 설계)

  • Seo, Won-Gi;Lee, Jin-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.124-131
    • /
    • 1997
  • This paper presents a modified adaptive control scheme that improves the transient performance of the overall system while maintaining the asymptotic convergence of the output error. The proposed control scheme is characterized as the added outer dynamic feedback loop on the conventional adaptive control scheme. This control scheme enables various robust control methods that were developed for standard model reference adaptive controllers to be applied to the proposed controller. In contrast with the modified adaptive controllers that use augmented errors to provide additional dynamic feedback, the proposed controller uses tracking error directly, thereby reducing the tracking error significantly in the transient state and making the error insensitive to noise.

  • PDF

Neuro-Fuzzy Control of Inverted Pendulum System for Intelligent Control Education

  • Lee, Geun-Hyung;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.309-314
    • /
    • 2009
  • This paper presents implementation of the adaptive neuro-fuzzy control method. Control performance of the adaptive neuro-fuzzy control method for a popular inverted pendulum system is evaluated. The inverted pendulum system is designed and built as an education kit for educational purpose for engineering students. The educational kit is specially used for intelligent control education. Control purpose is to satisfy balancing angle and desired trajectory tracking performance. The adaptive neuro-fuzzy controller has the Takagi-Sugeno(T-S) fuzzy structure. Back-propagation algorithm is used for updating weights in the fuzzy control. Control performances of the inverted pendulum system by PID control method and the adaptive neuro-fuzzy control method are compared. Control hardware of a DSP 2812 board is used to achieve the real-time control performance. Experimental studies are conducted to show successful control performances of the inverted pendulum system by the adaptive neuro-fuzzy control method.

Optimal Bandwidth Allocation and QoS-adaptive Control Co-design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.596-606
    • /
    • 2008
  • In this paper, we present a co-design methodology of dynamic optimal network-bandwidth allocation (ONBA) and adaptive control for networked control systems (NCSs) to optimize overall control performance and reduce total network-bandwidth usage. The proposed dynamic co-design strategy integrates adaptive feedback control with real-time scheduling. As part of this co-design methodology, a "closed-loop" ONBA algorithm for NCSs with communication constraints is presented. Network-bandwidth is dynamically assigned to each control loop according to the quality of performance (QoP) information of each control loop. As another part of the co-design methodology, a network quality of service (QoS)-adaptive control design approach is also presented. The idea is based on calculating new control values with reference to the network QoS parameters such as time delays and packet losses measured online. Simulation results show that this co-design approach significantly improves overall control performance and utilizes less bandwidth compared to static strategies.

A Study on the Performance Improvement of Indirect Adaptive Controllers Using a CP net (CP net을 이용한 간접적응제어기 성능개선에 관한 연구)

  • Chung, Kee-Chull
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.136-138
    • /
    • 1997
  • This paper proposes a design method to improve the performance of Indirect Adaptive Controllers using a CP net. This hybrid control architecture consists of Indirect Adaptive Controllers and CP net Controller. The performance of a single Adaptive Controller, multi Adaptive Controllers and the proposed model is compared by control problems. The simulation results show that the proposed model is superior to the others in most cases, in regard of not only learning speed but also control problems.

  • PDF

A Robust Adaptive Control of Robot Manipulator Based on TMS320C80

  • Han, Sung-Hyun;Jung, Dong-Yean;Shin, Heang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2540-2545
    • /
    • 2003
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF