• Title/Summary/Keyword: adaptive compensation

Search Result 378, Processing Time 0.041 seconds

A Robust Discrete-Time Adaptive Control with a Compensator (보상기를 이용한 강인한 이산 시간 적응 제어)

  • 이호진;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1610-1617
    • /
    • 1988
  • In this paper, a robust discrete-time adaptive control with compensation is proposed for single-input single-output discrete-time plants which have unmodeled dynamics. The stability of the overall system is studied using the conic sector stability theorems when a normalized constant gain parameter adaptation algorithm and a properly chosen compensation are used. An illustrative exmple shows that this compensation can also increase the parameter adaptation speed. And a method of compensation using the adaptive observation is also discussed.

  • PDF

A General Analysis and Complexity Reduction for the Lattice Transversal Joint Adaptive Filter

  • Yoo, Jae-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2035-2038
    • /
    • 2002
  • The necessity of the filter coefficients compensation for the LTJ adaptive filter was explained generally and easily by analyzing it with respect to the time-varying transform domain adaptive filter. And also the reduction method of computational complexity for filter coefficients compensation was proposed and its effectiveness was verified through experiments using artificial and real speech signals. The proposed adaptive filter reduces the computational complexity for filter coefficients compensation by 95%, and when the filter is applied to the acoustic echo canceller with 1000 taps, the total complexity is reduced by 82%

  • PDF

Adaptive Particle Filter Design for Radome Aberration Error Compensation (레이돔 굴절 오차 보상을 위한 적응 파티클 필터 설계)

  • Han, Sang-Sul;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.947-953
    • /
    • 2011
  • Radome aberration error causes degradation of miss distance as well as stability of high maneuver missile system with RF seeker. A study about radome compensation method is important in this kind of missile system design. Several kinds of methods showed good compensation performance in their paper. Proposed adaptive Particle filter estimates line of sight rate excluding the radome induced error. This paper shows effectiveness of adaptive Particle filter as compensation method of radome aberration error. Robust performance of this filter depends on external aiding measurement, target acceleration. Tuning of system error covariance can make this filter unsensitive against the error of target acceleration information. This paper demonstrates practical usage of adaptive Particle filter for reducing miss distance and increasing stability against disturbance of radome aberration error through performance analysis.

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

Adaptive nonlinear compensation of digital communication channels using a volterra filter (볼테라 필터를 이용한 디지털 통신 채널의 적응 비선형 보상기법)

  • 김진영;최봉준;남상원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.16-19
    • /
    • 1996
  • The objective of this paper is to present a new adaptive nonlinear compensation method, which is based upon the Pth-order inverse theory and can be implemented in a systematic way, for weakly nonlinear systems that can be modeled by a Volterra series. In particular, employment of the proposed approach for the linearization of a given nonlinear system leads to the effective elimination of (up to a required order) nonlinearities in the overall system output. To demonstrate the feasibility of the proposed method, simulation results using a satellite communication system model are also provided.

  • PDF

Phase Error Reduction for Multi-frequency Fringe Projection Profilometry Using Adaptive Compensation

  • Cho, Choon Sik;Han, Junghee
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • A new multi-frequency fringe projection method is proposed to reduce the nonlinear phase error in 3-D shape measurements using an adaptive compensation method. The phase error of the traditional fringe projection technique originates from various sources such as lens distortion, the nonlinear imaging system and a nonsinusoidal fringe pattern that can be very difficult to model. Inherent possibility of phase error appearing hinders one from accurate 3-D reconstruction. In this work, an adaptive compensation algorithm is introduced to reduce adaptively the phase error resulting from the fringe projection profilometry. Three different frequencies are used for generating the gratings of projector and conveyed to the four-step phase-shifting procedure to measure the objects of very discontinuous surfaces. The 3-D shape results show that this proposed technique succeeds in reconstructing the 3-D shape of any type of objects.

A New Analysis and a Reduction Method of Computational Complexity for the Lattice Transversal Joint (LTJ) Adaptive Filter (격자 트랜스버설 결합 (LTJ) 적응필터의 새로운 해석과 계산량 감소 방법)

  • 유재하
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.438-445
    • /
    • 2002
  • In this paper, the necessity of the filter coefficients compensation for the lattice transversal joint (LTJ) adaptive filter was explained in general and with ease by analyzing it with respect to the time-varying transform domain adaptive filter. And also the reduction method of computational complexity for filter coefficients compensation was proposed using the property that speech signal is stationary during a short time period and its effectiveness was verified through experiments using artificial and real speech signals. The proposed adaptive filter reduces the computational complexity for filter coefficients compensation by 95%, and when the filter is applied to the acoustic echo canceller with 1000 taps, the total complexity is reduced by 82%.

Frame Rate up-conversion Algorithm using Adaptive Overlapped Block Motion Compensation (적응적 중첩 블록 움직임 보상을 이용한 프레임 율 향상 알고리즘)

  • Lee, Kangjun
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.785-790
    • /
    • 2019
  • In this paper, a new bilateral frame rate up-conversion algorithm using adaptive overlapped block motion compensation is proposed. In this algorithm, the adaptive overlapped block motion compensation is based on the motion complexity of the reference region. As the motion complexity is determined by the size of the previously coded motion estimation prediction, the overlapped block motion compensation method is selected without any additional computational complexity. Experimental results show that the proposed algorithm provides better image quality than conventional methods both objectively and subjectively.

Adaptive High Precision Control of Dynamic System Using Friction Compensation Schemes (마찰력 보상 기법을 이용한 동적 시스템의 고 정밀 적응제어)

  • Jeon, Buyng-Gyoon;Jeon, Gi-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.10
    • /
    • pp.555-562
    • /
    • 2000
  • We propose an adaptive nonlinear control algorithm for compensation of the stick-slip friction in a dynamic system. The friction force and mass of the system are estimated and compensated by adaptive control law. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Laypunov stability theory, and its convergence is guaranteed under the bounded noise or torque disturbance. We verified the performance of the proposed algorithm by computer simulation on one-DOF mechanical system with friction.

  • PDF

I/Q Gain and Phase Imbalances Compensation Algorithm by using Variable Step-size Adaptive Loops at Direct Conversion Receiver (가변 스텝 적응적 루프를 이용한 직접 변환 방식 수신기에서의 이득 및 위상 불일치 보상 알고리즘)

  • 송윤정;나성웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1104-1111
    • /
    • 2003
  • The paper presents an algorithm for the compensation of gain and phase imbalances to exist between I-phase and Q-phase signal at direct conversion receiver. We propose a gain and phase imbalances blind equalization compensation algorithm by using variable step-size adaptive loop at direct conversion receiver. The blind equalization schemes have trade-off between convergence speed and jitter effect for the compensation of gain and phase imbalance. We propose the variable step-size adaptive loop method, which varies the loop coefficients according to errors, for recovering these problem. By using variable step-size adaptive loops, we propose to speed up the convergence process and reduce the jitter effect and simulation results show that the algorithm compensates signal loss and speeds up convergence time.