• Title/Summary/Keyword: adaptive clustering

Search Result 257, Processing Time 0.036 seconds

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

A Personalized Music Recommendation System with a Time-weighted Clustering (시간 가중치와 가변형 K-means 기법을 이용한 개인화된 음악 추천 시스템)

  • Kim, Jae-Kwang;Yoon, Tae-Bok;Kim, Dong-Moon;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.504-510
    • /
    • 2009
  • Recently, personalized-adaptive services became the center of interest in the world. However the services about music are not widely diffused out. That is because the analyzing of music information is more difficult than analyzing of text information. In this paper, we propose a music recommendation system which provides personalized services. The system keeps a user's listening list and analyzes it to select pieces of music similar to the user's preference. For analysis, the system extracts properties from the sound wave of music and the time when the user listens to music. Based on the properties, a piece of music is mapped into a point in the property space and the time is converted into the weight of the point. At this time, if we select and analyze the group which is selected by user frequently, we can understand user's taste. However, it is not easy to predict how many groups are formed. To solve this problem, we apply the K-means clustering algorithm to the weighted points. We modified the K-means algorithm so that the number of clusters is dynamically changed. This manner limits a diameter so that we can apply this algorithm effectively when we know the range of data. By this algorithm we can find the center of each group and recommend the similar music with the group. We also consider the time when music is released. When recommending, the system selects pieces of music which is close to and released contemporarily with the user's preference. We perform experiments with one hundred pieces of music. The result shows that our proposed algorithm is effective.

Colored Object Extraction using Fuzzy Neural Network (퍼지 신경회로망을 이용한 칼라 물체 추출)

  • Kim, Yong-Soo;Chung, Seung-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.226-231
    • /
    • 2007
  • This paper presents a method of colored object extraction from an image using the fuzzy neural network. Fuzzy neural network divides an image into two clusters. It extracts the prototypes of Cb and Cr of object and background by controlling the vigilance parameter. The proposed method extracted object regardless of the position, the size, and the intensity of object. We compared the performance of the proposed method with that of the method of using subjective threshold value. And, we compared the performance of the proposed method with that of the method of using subjective threshold value by using several images with added noises.

Mobility-Adaptive Routing Update Scheme for Wireless Networks with Group Mobility (이동성 지원 메쉬 네트워크를 위한 클러스터 기반의 멀티 채널 MAC)

  • Kim, Jong-Hum;Jeon, Hahn-Earl;Lee, Jai-Yong;Park, Soo-Bum;You, Young-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.120-129
    • /
    • 2012
  • Wireless mesh network (WMN) has recently emerged as a promising technology for tactical operation. If a platoon is organized with MPs, this system is suitable for tactical coverage is given for battle field where there is a shortage of wired infrastructure. However, MPs of typical WMN are generally fixed. This condition does not apply to diverse tactical scenarios. In this paper, it is considered that MPs have group mobility for flexible tactical networks. We propose cluster based multi-channel MAC scheme for mobilie WMN with single antenna condition. We have reduced the collision problems and message storming problems occur by mobility, so the reliability of WMN has been improved. Consequently, reliable communication is guaranteed by our framework in mobile WMN.

Cluster Head Selection Algorithm for Reducing overload of Head Node in Wireless Sensor Network (무선 센서 네트워크 환경에서 헤더 노드의 과부하를 줄이기 위한 클러스터 헤드 선출 알고리즘)

  • Lee, Jong-Sung;Jeon, Min-Ho;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.612-615
    • /
    • 2012
  • Energy efficiency in wireless sensor network is a principal issue because wireless sensor network uses limited energy. In wireless sensor network, because nodes are placed randomly, they may be concentrated in certain area. This dense area causes shortening the life of the concentrated area, and furthermore reducing the life of the entire network. In this paper, we suggest a additional cluster head selection algorithm for reducing the overload of head node in dense area and shows simulation result using our algorithm with LEACH algorithm.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Optimized Design of Intelligent White LED Dimming System Based on Illumination-Adaptive Algorithm (조도 적응 알고리즘 기반 지능형 White LED Dimming System의 최적화 설계)

  • Lim, Sung-Joon;Jung, Dae-Hyung;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1956-1957
    • /
    • 2011
  • 본 연구는 White LED를 이용하여 주변 밝기 변화에 빠르게 적응하는 퍼지 뉴로 Dimming Control System을 설계한다. 본 논문에서는 방사형기저함수 신경회로망(Radial Basis Function Neural Network: RBFNN)을 설계하여 실제 White LED Dimming Control System에 적용시켜 모델의 근사화 및 일반화 성능을 평가한다. 제안한 모델에서의 은닉층은 방사형기저함수를 사용하여 적합도를 구현하였고, 후반부의 연결가중치는 경사하강법을 사용한다. 이때 멤버쉽 함수의 중심점은 HCM 클러스터링 (Hard C-Means Clustering)을 적용하여 결정한다. 연결가중치는 4가지 형태의 다항식을 대입하여 출력을 평가하였다. 최종 출력의 최적화를 위하여 PSO(Particle Swarm Optimization)을 이용하여 은닉층 노드수 및 다항식 형태를 결정한다. 본 논문에서 제안한 LED Dimming Control System은 Atmega8535를 사용하여 PWM 제어 방식을 사용하고, 조도계(Cds)를 이용하여 LED의 밝기에 따른 주변의 밝기를 감지하여 조명에 적응시키는 방법을 적용하였다.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Cluster-Head Election using SVM Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서 SVM 알고리즘을 이용한 클러스터 헤드 결정기법)

  • Lee, In-Chul;Chang, Hyeong-Jun;Shim, Il-Joo;Chang, Kyung-Bae;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2099-2100
    • /
    • 2006
  • 제한된 전력의 노드들로 구성된 무선 센서 네트워크에서 효율적인 정보 수집이 이루어지기 위해서는 전체 네트워크의 Life Time을 늘리는 게 중요하다. 각각의 센서 노드들이 멀리 떨어져 있는 BS(Base Station)으로 직접 데이터를 전송하면 전력소비가 매우 크고 비효율 적이다. 그리하여 네트워크의 life time을 늘리기 위한 많은 연구가 이루어지고 있다. 그중에 클러스터링 기법은 가장 널리 연구되는 기법 중에 하나이다. 대표적인 클러스터링 기법 LEACH(Low-Energy Adaptive Clustering Hierarchy)[1]는 전체 노드 수의 5%클 클러스터 헤드로 결정하여 나머지 노드들로부터 데이터를 수집하여 BS로 전송함으로써 에너지를 효율적으로 사용하는 알고리즘이다. 그러나 클러스터 헤드를 결정하는데 있어서 잔여 에너지를 고려하지 않고 순환적으로 결정하는 문제점을 가지고 있다. 그래서 본 논문에서는 SVM(Supprt Vector Machine)을 이용하여 FND(First Node Dic)가 발생했을 때 각 노드들의 에너지 잔량 정도를 따져서 영역을 나눈 후, 에너지가 더 많은 영역에서 클러스터 헤드를 선정하는 방법을 제안한다. 잔량 에너지가 많은 노드를 클러스터 헤드로 결정함으로써 전체 네트워크의 life time을 늘릴 수 있다.

  • PDF