• Title/Summary/Keyword: adaptive clustering

Search Result 257, Processing Time 0.023 seconds

Implementation of coffee house using Artificial Intelligence and IoT technology (인공지능과 IoT 기술을 활용한 댁내 커피하우스 구축)

  • Kim, Jae-Hee;Kang, Bo-Gyeong;Kum, Jin-Woo;Cho, Byung-Soo;Moon, Jae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.204-207
    • /
    • 2020
  • 커피는 전 세계인들의 꾸준한 인기를 받고 있으며, 커피머신에 대한 관심이 증가하고 있다. 따라서 본 논문의 커피머신은 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망을 이용하여 지도학습 및 비지도 학습으로 개인에게 최적화된 커피를 제공한다. 또한, 사용자는 어플리케이션을 통해 커피머신을 무선으로 조작할 수 있고 웹을 통한 관리자 모드로 데이터를 관리하고 학습시킬 수 있다.

Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

  • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-92
    • /
    • 2014
  • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.

An Energy Harvesting Aware Routing Algorithm for Hierarchical Clustering Wireless Sensor Networks

  • Tang, Chaowei;Tan, Qian;Han, Yanni;An, Wei;Li, Haibo;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.504-521
    • /
    • 2016
  • Recently, energy harvesting technology has been integrated into wireless sensor networks to ameliorate the nodes' energy limitation problem. In theory, the wireless sensor node equipped with an energy harvesting module can work permanently until hardware failures happen. However, due to the change of power supply, the traditional hierarchical network routing protocol can not be effectively adopted in energy harvesting wireless sensor networks. In this paper, we improve the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to make it suitable for the energy harvesting wireless sensor networks. Specifically, the cluster heads are selected according to the estimation of nodes' harvested energy and consumed energy. Preference is given to the nodes with high harvested energy while taking the energy consumption rate into account. The utilization of harvested energy is mathematically formulated as a max-min optimization problem which maximizes the minimum energy conservation of each node. We have proved that maximizing the minimum energy conservation is an NP-hard problem theoretically. Thus, a polynomial time algorithm has been proposed to derive the near-optimal performance. Extensive simulation results show that our proposed routing scheme outperforms previous works in terms of energy conservation and balanced distribution.

Adaptive Load Balancing Scheme using a Combination of Hierarchical Data Structures and 3D Clustering for Parallel Volume Rendering on GPU Clusters (계층 자료구조의 결합과 3차원 클러스터링을 이용하여 적응적으로 부하 균형된 GPU-클러스터 기반 병렬 볼륨 렌더링)

  • Lee Won-Jong;Park Woo-Chan;Han Tack-Don
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.1-14
    • /
    • 2006
  • Sort-last parallel rendering using a cluster of GPUs has been widely used as an efficient method for visualizing large- scale volume datasets. The performance of this method is constrained by load balancing when data parallelism is included. In previous works static partitioning could lead to self-balance when only task level parallelism is included. In this paper, we present a load balancing scheme that adapts to the characteristic of volume dataset when data parallelism is also employed. We effectively combine the hierarchical data structures (octree and BSP tree) in order to skip empty regions and distribute workload to corresponding rendering nodes. Moreover, we also exploit a 3D clustering method to determine visibility order and save the AGP bandwidths on each rendering node. Experimental results show that our scheme can achieve significant performance gains compared with traditional static load distribution schemes.

Moving object segmentation and tracking using feature based motion flow (특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적)

  • 이규원;김학수;전준근;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1998-2009
    • /
    • 1998
  • An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.

  • PDF

Modified multi-sense skip-gram using weighted context and x-means (가중 문맥벡터와 X-means 방법을 이용한 변형 다의어스킵그램)

  • Jeong, Hyunwoo;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In recent years, word embedding has been a popular field of natural language processing research and a skip-gram has become one successful word embedding method. It assigns a word embedding vector to each word using contexts, which provides an effective way to analyze text data. However, due to the limitation of vector space model, primary word embedding methods assume that every word only have a single meaning. As one faces multi-sense words, that is, words with more than one meaning, in reality, Neelakantan (2014) proposed a multi-sense skip-gram (MSSG) to find embedding vectors corresponding to the each senses of a multi-sense word using a clustering method. In this paper, we propose a modified method of the MSSG to improve statistical accuracy. Moreover, we propose a data-adaptive choice of the number of clusters, that is, the number of meanings for a multi-sense word. Some numerical evidence is given by conducting real data-based simulations.

The Adaptive Personalization Method According to Users Purchasing Index : Application to Beverage Purchasing Predictions (고객별 구매빈도에 동적으로 적응하는 개인화 시스템 : 음료수 구매 예측에의 적용)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.95-108
    • /
    • 2011
  • TThis is a study of the personalization method that intelligently adapts the level of clustering considering purchasing index of a customer. In the e-biz era, many companies gather customers' demographic and transactional information such as age, gender, purchasing date and product category. They use this information to predict customer's preferences or purchasing patterns so that they can provide more customized services to their customers. The previous Customer-Segmentation method provides customized services for each customer group. This method clusters a whole customer set into different groups based on their similarity and builds predictive models for the resulting groups. Thus, it can manage the number of predictive models and also provide more data for the customers who do not have enough data to build a good predictive model by using the data of other similar customers. However, this method often fails to provide highly personalized services to each customer, which is especially important to VIP customers. Furthermore, it clusters the customers who already have a considerable amount of data as well as the customers who only have small amount of data, which causes to increase computational cost unnecessarily without significant performance improvement. The other conventional method called 1-to-1 method provides more customized services than the Customer-Segmentation method for each individual customer since the predictive model are built using only the data for the individual customer. This method not only provides highly personalized services but also builds a relatively simple and less costly model that satisfies with each customer. However, the 1-to-1 method has a limitation that it does not produce a good predictive model when a customer has only a few numbers of data. In other words, if a customer has insufficient number of transactional data then the performance rate of this method deteriorate. In order to overcome the limitations of these two conventional methods, we suggested the new method called Intelligent Customer Segmentation method that provides adaptive personalized services according to the customer's purchasing index. The suggested method clusters customers according to their purchasing index, so that the prediction for the less purchasing customers are based on the data in more intensively clustered groups, and for the VIP customers, who already have a considerable amount of data, clustered to a much lesser extent or not clustered at all. The main idea of this method is that applying clustering technique when the number of transactional data of the target customer is less than the predefined criterion data size. In order to find this criterion number, we suggest the algorithm called sliding window correlation analysis in this study. The algorithm purposes to find the transactional data size that the performance of the 1-to-1 method is radically decreased due to the data sparity. After finding this criterion data size, we apply the conventional 1-to-1 method for the customers who have more data than the criterion and apply clustering technique who have less than this amount until they can use at least the predefined criterion amount of data for model building processes. We apply the two conventional methods and the newly suggested method to Neilsen's beverage purchasing data to predict the purchasing amounts of the customers and the purchasing categories. We use two data mining techniques (Support Vector Machine and Linear Regression) and two types of performance measures (MAE and RMSE) in order to predict two dependent variables as aforementioned. The results show that the suggested Intelligent Customer Segmentation method can outperform the conventional 1-to-1 method in many cases and produces the same level of performances compare with the Customer-Segmentation method spending much less computational cost.

Data Aggregation and Transmission Mechanism for Energy Adaptive Node in Wireless Sensor Networks (무선 센서네트워크 환경에서 에너지를 고려한 노드 적응적 데이터 병합 및 전달 기법)

  • Cho, Young-Bok;You, Mi-Kyung;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.903-911
    • /
    • 2011
  • In this paper we proposed an energy adaptive data aggregation and transmission mechanism to solve the problem of energy limitation in wireless sensor networks (WSNs). Hierarchical structure methods are wildly used in WSNs to improve the energy efficiency. LEACH and TEEN protocols are the typical techniques. In these methods, all nodes, including nodes who have sensed data to transmit and nodes who haven't, are set frame timeslots in every round. MNs (member nodes) without sensed data keep active all the time, too. These strategies caused energy waste. Furthermore, if data collection in MNs is same to the previous transmission, it increases energy consumption. Most hierarchical structure protocols are developed based on LEACH. To solve the above problems, this paper proposed a method in which only MNs with sensed data can obtain allocated frame to transmit data. Moreover, if the MNs have same sensed data with previous, MNs turn to sleep mode. By this way redundant data transmission is avoided and aggregation in CH is lightened, too.

A Performance Comparison of RMMA and SCA Adaptive Equalization Algorithm in Multilevel QAM Signal Transmission (Multilevel QAM 신호 전송에서 RMMA와 SCA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2018
  • This paper compare the adaptive equalization performance of RMMA (Region-based MMA) and SCA (Square Contour Algorithm) in order to minimize the intersymbol interference that is occurred in communication channel when transmit the multilevel QAM signal. The RMMA used for improving the performance by translate to 4-level constant modulus and stability in current MMA algorithm, and the SCA used for the improving the performacne by combines the current CMA and RCA algorithm. These algorithms are aimed to improving the equalization peformance by applying the differenct principle each other in multilevel QAM signal, its different performance were compared by computer simulation in the same channel environment. For this, the output signal constellation of equalizer, residual isi, maximum distortion were applied in performance index. As a result, RMMA have more fairly good in every performance index such as signal point clustering capabilities and convergence speed compared to SCA. It is confired that the equalization noise due to misadjumstment was reduced in RMMA than SCA.

Region-Based Moving Object Segmentation for Video Monitoring System (비디오 감시시스템을 위한 영역 기반의 움직이는 물체 분할)

  • 이경미;김종배;이창우;김항준
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2003
  • This paper presents an efficient region-based motion segmentation method for segmenting of moving objects in a traffic scene with a focus on a Video Monitoring System (VMS). The presented method consists of two phases: motion detection and motion segmentation. Using the adaptive thresholding technique, the differences between two consecutive frames are analyzed to detect the movements of objects in a scene. To segment the detected regions into meaningful objects which have the similar intensity and motion information, the regions are initially segmented using a k-means clustering algorithm and then, the neighboring regions with the similar motion information are merged. Since we deal with not the whole image, but the detected regions in the segmentation phase, the computational cost is reduced dramatically. Experimental results demonstrate robustness in the occlusions among multiple moving objects and the change in environmental conditions as well.