• Title/Summary/Keyword: adaptive classification

Search Result 360, Processing Time 0.032 seconds

A Latent Profile Analysis of Stress Coping Strategies among Korean Adults at the Early Stage of the Coronavirus Pandemic(COVID-19) and Verification of Influencing Factors (코로나 팬데믹 초기 한국인의 스트레스 대처 양상에 따른 잠재계층 분류와 영향요인 검증)

  • Nam, Seulki;Lee, Dong Hun
    • Korean Journal of Culture and Social Issue
    • /
    • v.28 no.3
    • /
    • pp.483-512
    • /
    • 2022
  • This study examined the patterns of coping strategies among Koreans during the early stage of the COVID-19 pandemic, explored the influence of demographic information (gender, age, economic level, household type), along with the unusual experiences due to COVID-19 (fear, stress of COVID, constraints of routine, income risk) on the classification of subclasses, and analyzed the latent profile differences in psychological wellbeing (life satisfaction, depression, and anxiety). An online survey was conducted among Korean Adults(n=600) between April 13, 2020 and 21, when WHO declared COVID-19 a global pandemic and Daegu as well as Gyeongsangbuk-do was nominated as a special disaster zone. First, Latent Profile Analysis (LPA) was used to identify subclasses of coping strategies and results suggested that the 4-class model had the best fit. Second, Class memberships were predicted by gender, age, economic level, as well as fear, stress, constraints of routine, and income risk, among the unusual experiences due to COVID-19. Finally, there are differences in psychological wellbeing among latent profiles. 'High level of adaptive coping group 3' showed the highest level of life satisfaction, 'Adaptive-maladaptive coping group 4' showed the highest level of depression, anxiety. Implications and suggestions are discussed based on the study results.

A Hybrid Oversampling Technique for Imbalanced Structured Data based on SMOTE and Adapted CycleGAN (불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법)

  • Jung-Dam Noh;Byounggu Choi
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.97-118
    • /
    • 2022
  • As generative adversarial network (GAN) based oversampling techniques have achieved impressive results in class imbalance of unstructured dataset such as image, many studies have begun to apply it to solving the problem of imbalance in structured dataset. However, these studies have failed to reflect the characteristics of structured data due to changing the data structure into an unstructured data format. In order to overcome the limitation, this study adapted CycleGAN to reflect the characteristics of structured data, and proposed hybridization of synthetic minority oversampling technique (SMOTE) and the adapted CycleGAN. In particular, this study tried to overcome the limitations of existing studies by using a one-dimensional convolutional neural network unlike previous studies that used two-dimensional convolutional neural network. Oversampling based on the method proposed have been experimented using various datasets and compared the performance of the method with existing oversampling methods such as SMOTE and adaptive synthetic sampling (ADASYN). The results indicated the proposed hybrid oversampling method showed superior performance compared to the existing methods when data have more dimensions or higher degree of imbalance. This study implied that the classification performance of oversampling structured data can be improved using the proposed hybrid oversampling method that considers the characteristic of structured data.

Energy Minimization Model for Pattern Classification of the Movement Tracks (행동궤적의 패턴 분류를 위한 에너지 최소화 모델)

  • Kang, Jin-Sook;Kim, Jin-Sook;Cha, Eul-Young
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.281-288
    • /
    • 2004
  • In order to extract and analyze complex features of the behavior of animals in response to external stimuli such as toxic chemicals, we implemented an adaptive computational method to characterize changes in the behavior of chironomids in response to treatment with the insecticide, diazinon. In this paper, we propose an energy minimization model to extract the features of response behavior of chironomids under toxic treatment, which is applied on the image of velocity vectors. It is based on the improved active contour model and the variations of the energy functional, which are produced by the evolving active contour. The movement tracks of individual chironomid larvae were continuously measured in 0.25 second intervals during the survey period of 4 days before and after the treatment. Velocity on each sample track at 0.25 second intervals was collected in 15-20 minute periods and was subsequently checked to effectively reveal behavioral states of the specimens tested. Active contour was formed around each collection of velocities to gradually evolve to find the optimal boundaries of velocity collections through processes of energy minimization. The active contour which is improved by T. Chan and L. Vese is used in this paper. The energy minimization model effectively revealed characteristic patterns of behavior for the treatment versus no treatment, and identified changes in behavioral states .is the time progressed.

Context-awareness User parameter Analysis based on Clustering Algorithm (상황인식정보 추출을 위한 클러스터링 알고리즘 기반 사용자 구분 알고리즘)

  • Kim, Min-seop;Ho, Shin-in;Jung, Byoung-hoon;Son, Ji-won;Jo, Ah-hyeon;do, yun-hyung;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.519-522
    • /
    • 2017
  • In this paper, we propose an algorithm for an alternative method using the clustering algorithm in a system that needs classification to extract individual user context information. In the conventional user classification system, the user has to input his own information. In this paper, we will research and develop a system applying a clustering algorithm which can extract user 's perceived information applying the improved algorithm for user management base. Generally, the algorithm that distinguishes users with the same data makes sure that recorded information matches the newly entered information, and then responds accordingly. However, it is troublesome to manually input information of the new user. Therefore, in this paper, we propose a method to distinguish users by using the clustering algorithm based on the analyzed data from the working memory in the accumulated system without directly inputting the user information. The study shows that the management method applied to the applied algorithm is more adaptive in environments where the number of people is different from that of the existing system (as a subjective observer test method).

  • PDF

Super-resolution Algorithm using Local Structure Analysis and Scene Adaptive Dictionary (국부 구조 분석과 장면 적응 사전을 이용한 초고해상도 알고리즘)

  • Choi, Ik Hyun;Lim, Kyoung Won;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.144-154
    • /
    • 2013
  • This paper proposes a new super-resolution algorithm where sharpness enhancement is merged in order to improve overall visual quality of up-scaled images. In the learning stage, multiple dictionaries are generated according to sharpness strength, and a proper dictionary among those dictionaries is selected to adapt to each patch in the inference stage. Also, additional post-processing suppresses boosting of artifacts in input low-resolution images during the inference stage. Experimental results that the proposed algorithm provides 0.3 higher CPBD than the bi-cubic and 0.1 higher CPBD than Song's and Fan's algorithms. Also, we can observe that the proposed algorithm shows better quality in textures and edges than the previous works. Finally, the proposed algorithm has a merit in terms of computational complexity because it requires the memory of only 17% in comparison with the previous work.

A Study on adaptive stages classification of the members by Tourist Police introduction (관광경찰대 도입에 따른 구성원의 적응단계 구분에 관한 연구)

  • Cho, Min-Sang;Jo, Hyun-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8228-8233
    • /
    • 2015
  • This study was examined for perception of introduction and adaptation stages focused on the tourist police in Seoul Metropolitan Police Agency. Seoul Metropolitan tourist police operates that is installed the first in Korea. Through in-depth interviews, we collected and analyzed data on the purpose of the tourist police, operating direction, the areas of activity, job characteristics, working environment. Awareness about activities of the tourist police members can have a significant impact on tourist police installations in the future. The survey was conducted for tourist police officers 16 people in the Seoul Metropolitan Police Agency, and analysis of the data was carried out through a qualitative research analysis program NVivo 10.0. Recognition was divided that Start step, Trial-and-error step, Skilled step, Completion step from the work experience of the tourist police and it analyzed the difference between each step. Each stage found difference in the individuals, working periods, also it was confirmed that difference of opinion about the settlement and completeness in the tourist police.

Feature Extraction by Line-clustering Segmentation Method (선군집분할방법에 의한 특징 추출)

  • Hwang Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.401-408
    • /
    • 2006
  • In this paper, we propose a new class of segmentation technique for feature extraction based on the statistical and regional classification at each vertical or horizontal line of digital image data. Data is processed and clustered at each line, different from the point or space process. They are designed to segment gray-scale sectional images using a horizontal and vertical line process due to their statistical and property differences, and to extract the feature. The techniques presented here show efficient results in case of the gray level overlap and not having threshold image. Such images are also not easy to be segmented by the global or local threshold methods. Line pixels inform us the sectionable data, and can be set according to cluster quality due to the differences of histogram and statistical data. The total segmentation on line clusters can be obtained by adaptive extension onto the horizontal axis. Each processed region has its own pixel value, resulting in feature extraction. The advantage and effectiveness of the line-cluster approach are both shown theoretically and demonstrated through the region-segmental carotid artery medical image processing.

Drone Location Tracking with Circular Microphone Array by HMM (HMM에 의한 원형 마이크로폰 어레이 적용 드론 위치 추적)

  • Jeong, HyoungChan;Lim, WonHo;Guo, Junfeng;Ahmad, Isitiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.393-407
    • /
    • 2020
  • In order to reduce the threat by illegal unmanned aerial vehicles, a tracking system based on sound was implemented. There are three main points to the drone acoustic tracking method. First, it scans the space through variable beam formation to find a sound source and records the sound using a microphone array. Second, it classifies it into a hidden Markov model (HMM) to find out whether the sound source exists or not, and finally, the sound source is In the case of a drone, a sound source recorded and stored as a tracking reference signal based on an adaptive beam pattern is used. The simulation was performed in both the ideal condition without background noise and interference sound and the non-ideal condition with background noise and interference sound, and evaluated the tracking performance of illegal drones. The drone tracking system designed the criteria for determining the presence or absence of a drone according to the improvement of the search distance performance according to the microphone array performance and the degree of sound pattern matching, and reflected in the design of the speech reading circuit.

Adaptive Detection of Unusual Heartbeat According to R-wave Distortion on ECG Signal (심전도 신호에서 R파 왜곡에 따른 적응적 특이심박 검출)

  • Lee, SeungMin;Ryu, ChunHa;Park, Kil-Houm
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.200-207
    • /
    • 2014
  • Arrhythmia electrocardiogram signal contains a specific unusual heartbeat with abnormal morphology. Because unusual heartbeat is useful for diagnosis and classification of various diseases, such as arrhythmia, detection of unusual heartbeat from the arrhythmic ECG signal is very important. Amplitude and kurtosis at R-peak point and RR interval are characteristics of ECG signal on R-wave. In this paper, we provide a method for detecting unusual heartbeat based on these. Through the value of the attribute deviates more from the average value if unusual heartbeat is more certainly, the proposed method detects unusual heartbeat in order using the mean and standard deviation. From 15 ECG signals of MIT-BIH arrhythmia database which has R-wave distortion, we compare the result of conventional method which uses the fixed threshold value and the result of proposed method. Throughout the experiment, the sensitivity is significantly increased to 97% from 50% using the proposed method.

Rotation-Scale-Translation-Intensity Invariant Algorithm for Fingerprint Identigfication (RSTI 불변 지문인식 알고리즘)

  • Kim, Hyun;Kim, Hak-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.88-100
    • /
    • 1998
  • In this paper, an algorithm for a real-time automatic fingerprint identification system is proposed. The fingerprint feature volume is extracted by considering distinct and local characteristics(such as intensity and image quality difference etc.) in fingerprint images, which makes the algorithm properly adaptive to various image acquisitionj methods. Also the matching technique is designed to be invariant on rotation, scaling and translation (RST) changes while being capable of real-time processing. And the classification of fingerprints is performed based on the ridge flow and the relations among singular points such as cores and deltas. The developed fingerprint identification algorithm has been applied to various sets of fingerprint images such as one from NIST(National Institute of Standards and Technology, USA), a pressed fingerprint database constructed according to Korean population distributions in sex, ages and jobs, and a set of rolled-than-scanned fingerprint images. The overall performance of the algorithm has been analyzed and evaluated to the false rejection ratio of 0.07% while holding the false acceptance ratio of 0%.

  • PDF