• 제목/요약/키워드: adaptive classification

검색결과 360건 처리시간 0.032초

Hand Gesture Recognition Using an Infrared Proximity Sensor Array

  • Batchuluun, Ganbayar;Odgerel, Bayanmunkh;Lee, Chang Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.186-191
    • /
    • 2015
  • Hand gesture is the most common tool used to interact with and control various electronic devices. In this paper, we propose a novel hand gesture recognition method using fuzzy logic based classification with a new type of sensor array. In some cases, feature patterns of hand gesture signals cannot be uniquely distinguished and recognized when people perform the same gesture in different ways. Moreover, differences in the hand shape and skeletal articulation of the arm influence to the process. Manifold features were extracted, and efficient features, which make gestures distinguishable, were selected. However, there exist similar feature patterns across different hand gestures, and fuzzy logic is applied to classify them. Fuzzy rules are defined based on the many feature patterns of the input signal. An adaptive neural fuzzy inference system was used to generate fuzzy rules automatically for classifying hand gestures using low number of feature patterns as input. In addition, emotion expression was conducted after the hand gesture recognition for resultant human-robot interaction. Our proposed method was tested with many hand gesture datasets and validated with different evaluation metrics. Experimental results show that our method detects more hand gestures as compared to the other existing methods with robust hand gesture recognition and corresponding emotion expressions, in real time.

Experimental Analysis of Equilibrization in Binary Classification for Non-Image Imbalanced Data Using Wasserstein GAN

  • Wang, Zhi-Yong;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권4호
    • /
    • pp.37-42
    • /
    • 2019
  • In this paper, we explore the details of three classic data augmentation methods and two generative model based oversampling methods. The three classic data augmentation methods are random sampling (RANDOM), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN). The two generative model based oversampling methods are Conditional Generative Adversarial Network (CGAN) and Wasserstein Generative Adversarial Network (WGAN). In imbalanced data, the whole instances are divided into majority class and minority class, where majority class occupies most of the instances in the training set and minority class only includes a few instances. Generative models have their own advantages when they are used to generate more plausible samples referring to the distribution of the minority class. We also adopt CGAN to compare the data augmentation performance with other methods. The experimental results show that WGAN-based oversampling technique is more stable than other approaches (RANDOM, SMOTE, ADASYN and CGAN) even with the very limited training datasets. However, when the imbalanced ratio is too small, generative model based approaches cannot achieve satisfying performance than the conventional data augmentation techniques. These results suggest us one of future research directions.

고체 전기활성 고분자 기반 가변 렌즈의 연구동향 (A Review: All Solid-state Electroactive Polymer-based Tunable Lens)

  • 신은재;고현우;김상연
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.41-48
    • /
    • 2021
  • In this paper, we review papers which report to the all solid-state electroactive polymer-based tunable lens. Since electroactive polymer-based tunable lenses change their focal length by responding to electric stimuli, it can be minimized the size and weight of optical modules. Thus, it has been received attention in the robot, mobile device and display industry. The all solid-state electroactive polymer-based tunable lenses can be classified into two categories depending on the classification of materials: ionic electroactive polymer-based lenses and non-ionic electroactive polymer-based lenses. Most of the ionic electroactive polymer-based tunable lenses are fabricated with ionic polymer-metal composite. So, the ionic electroactive polymer-based tunable lenses can be operated under low electric voltage. But small force, slow recovery time and environmental limitation for operation has been pointed to the disadvantage of the lenses. The non-ionic electroactive polymer-based tunable lenses are classified again into two categories: dielectric polymer-based tunable lenses and polyvinylchloride gel-based tunable lenses. The advantage of the dielectric polymer-based tunable lenses is fast response to electric stimuli. But the essential flexible electrodes degrade performance of the lens. Polyvinylchloride gel-based tunable lens has reported impressive performance without flexible electrodes.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Knowledge Based Recommender System for Disease Diagnostic and Treatment Using Adaptive Fuzzy-Blocks

  • Navin K.;Mukesh Krishnan M. B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.284-310
    • /
    • 2024
  • Identifying clinical pathways for disease diagnosis and treatment process recommendations are seriously decision-intensive tasks for health care practitioners. It requires them to rely on their expertise and experience to analyze various categories of health parameters from a health record to arrive at a decision in order to provide an accurate diagnosis and treatment recommendations to the end user (patient). Technological adaptation in the area of medical diagnosis using AI is dispensable; using expert systems to assist health care practitioners in decision-making is becoming increasingly popular. Our work architects a novel knowledge-based recommender system model, an expert system that can bring adaptability and transparency in usage, provide in-depth analysis of a patient's medical record, and prescribe diagnostic results and treatment process recommendations to them. The proposed system uses a set of parallel discrete fuzzy rule-based classifier systems, with each of them providing recommended sub-outcomes of discrete medical conditions. A novel knowledge-based combiner unit extracts significant relationships between the sub-outcomes of discrete fuzzy rule-based classifier systems to provide holistic outcomes and solutions for clinical decision support. The work establishes a model to address disease diagnosis and treatment recommendations for primary lung disease issues. In this paper, we provide some samples to demonstrate the usage of the system, and the results from the system show excellent correlation with expert assessments.

저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식 (Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest)

  • 허두영;김상준;곽충섭;남재열;고병철
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.282-294
    • /
    • 2017
  • 본 논문에서는 차량이 움직일 때 발생하는 카메라의 움직임, 도로상의 광원에 강건한 지능형 전조등 제어 시스템을 제안한다. 후보광원을 검출할 때 카메라의 원근 범위 추정 모델을 기반으로 한 ROI (Region of Interest)를 사용하며 이는 FROI (Front ROI)와 BROI (Back ROI)로 나뉘어 사용된다. ROI내에서 차량의 전조등과 후미등, 반사광 및 주변 도로의 조명들은 2개의 적응적 임계값에 의해 세그먼트화 된다. 세그먼트화 된 광원 후보군들로부터 후미등은 적색도(redness)와 Haar-like특징에 기반한 랜덤포레스트 분류기에 의해 검출된다. 전조등과 후미등 분류 과정에서 빠른 학습과 실시간 처리를 위해 SVM(Support Vector Machine) 또는 CNN(Convolutional Neural Network)을 사용하지 않고 랜덤포레스트 분류기를 사용했다. 마지막으로 페어링(Pairing) 단계에서는 수직좌표 유사성, 광원들간의 연관성 검사와 같은 사전 정의된 규칙을 적용한다. 제안된 알고리즘은 다양한 야간 운전환경을 포함하는 데이터에 적용한 결과, 최근의 관련연구 보다 향상된 검출 성능을 보여주었다.

UHD 영상의 실시간 처리를 위한 고성능 HEVC In-loop Filter 부호화기 하드웨어 설계 (Hardware Design of High Performance In-loop Filter in HEVC Encoder for Ultra HD Video Processing in Real Time)

  • 임준성;;류광기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.401-404
    • /
    • 2015
  • 본 논문에서는 UHD급 영상의 실시간 처리를 위한 고성능 HEVC(High Efficiency Video Coding) In-loop Filter 부호화기의 효율적인 하드웨어 구조를 제안한다. HEVC는 양자화 에러로 발생하는 화질 열화 문제를 해결하기 위해 Deblocking Filter와 SAO(Sample Adaptive Offset)로 구성된 In-loop Filter를 사용한다. 본 논문에서 제안하는 In-loop Filter 부호화기 하드웨어 구조에서 Deblocking Filter와 SAO는 수행시간 단축을 위해 $32{\times}32CTU$를 기준으로 2단 하이브리드 파이브라인 구조를 갖는다. Deblocking Filter는 10단계 파이프라인 구조로 수행되며, 메모리 접근 최소화 및 참조 메모리 구조의 단순화를 위해 효율적인 필터링 순서를 제안한다. 또한 SAO는 화소들의 분류와 SAO 파라미터 적용을 2단계 파이프라인 구조로 구현하고, 화소들의 처리를 간소화 및 수행 사이클 감소를 위해 두 개의 병렬 Three-layered Buffer를 사용한다. 본 논문에서 제안하는 In-loop Filter 부호화기 하드웨어 구조는 Verilog HDL로 설계하였으며, TSMC 0.13um CMOS 표준 셀 라이브러리를 사용하여 합성한 결과 약 205K개의 게이트로 구현되었다. 또한 110MHz의 동작주파수에서 4K UHD급 해상도인 $3840{\times}2160@30fps$의 실시간 처리가 가능하다.

  • PDF

항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로 (Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River)

  • 이재빈;김혜진;김재학;위광재
    • 한국측량학회지
    • /
    • 제39권4호
    • /
    • pp.235-243
    • /
    • 2021
  • 하천측량은 하천기본계획 및 각종 하천 정비의 기초자료를 취득하기 위해 활용되며 하천의 물리적 형태와 하천 정비 이후의 변화를 예측하기 위해서도 활용된다. 항공수심라이다(ABL: Airborne Bathymetric LiDAR) 시스템은 그린 레이저를 사용하여 수면과 하상을 동시에 측량할 수 있는 시스템으로써 하천의 수심 및 하상 측량에 효과적으로 활용될 수 있다. 항공수심라이다 데이터를 하천 측량에 활용하기 위해서는 취득된 점군 데이터부터 수면과 하상 점들을 분리하고 추출하는 과정이 선행되어야 한다. 본 연구에서는 대표적인 지면필터링 기법인 ATIN(Adaptive Triangular Irregular Network) 알고리즘을 적용하여 항공수심라이다의 점군 데이터로부터 저수심 하천의 수면과 하상 점군을 분리하기 위한 방법론을 구축하고 제안된 방법론의 효용성을 검증하였다. 이를 위해 충청남도 곡교천 일대에서 Leica Chiroptera 4X 센서로부터 취득된 데이터를 이용하여 실험을 수행하였다. 연구결과 수면과 하상에 대한 분류 정확도는 88.8%, Kappa 계수는 0.825를 얻을 수 있었으며, 항공수심라이다 데이터를 하천측량에 효과적으로 활용할 수 있음을 확인하였다.

기계학습 기반 모델을 활용한 시화호의 수질평가지수 등급 예측 (WQI Class Prediction of Sihwa Lake Using Machine Learning-Based Models)

  • 김수빈;이재성;김경태
    • 한국해양학회지:바다
    • /
    • 제27권2호
    • /
    • pp.71-86
    • /
    • 2022
  • 해양환경을 정량적으로 평가하기 위해 수질평가지수(water quality index, WQI)가 사용되고 있다. 우리나라는 해양수산부고시 해양환경기준에 따라 WQI를 5개 등급으로 구분하여 수질을 평가한다. 하지만, 방대한 수질 조사 자료에 대한 WQI 계산은 복잡하고 많은 시간이 요구된다. 이 연구는 기존의 조사된 수질 자료를 활용하여 WQI 등급을 예측할 수 있는 기계학습(machine learning, ML) 기반의 모델을 제안하고자 한다. 특별관리해역인 시화호를 모델링 지역으로 선정하였다. AdaBoost와 TPOT 알고리즘을 모델 훈련을 위해 사용하였으며, 분류 모델 평가 지표(정확도, 정밀도, F1, Log loss)로 모델 성능을 평가하였다. 훈련하기 전, 각 알고리즘 모델의 최적 입력자료 조합을 탐색하기 위해 변수 중요도와 민감도 분석을 수행하였다. 그 결과 저층 용존산소(dissolved oxygen, DO)는 모델의 성능에서 가장 중요한 인자였다. 반면, 표층 용존무기질소(dissolved inorganic nitrogen, DIN)와 표층 용존무기인(dissolved inorganic phosphorus, DIP)은 상대적으로 영향이 적었다. 한편, 최적 모델의 시공간적 민감도와 WQI 등급 별 민감도를 비교한 결과 각 조사 정점 및 시기, 등급 별 모델의 예측 성능이 상이하였다. 결론적으로 TPOT 알고리즘이 모든 입력자료 조합에서 성능이 더 우수하여 충분한 자료로 훈련된 최적 모델은 새로운 수질 조사 자료의 WQI 등급을 정확하게 분류할 수 있을 거라 판단된다.