• Title/Summary/Keyword: adaptive balancing

Search Result 78, Processing Time 0.026 seconds

Robust Indirect Adaptive Fuzzy Controller for Balancing and Position Control of Inverted Pendulum System

  • Kim Yong-Tae;Kim Dong-Yon;Yoo Jae-Ha
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.155-160
    • /
    • 2006
  • In the paper a robust indirect adaptive fuzzy controller is proposed for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the proposed fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing and a supervisory fuzzy controller which emulates heuristic control strategy and arbitrate two control objectives. It is proved that the signals in the overall system are bounded. Simulation results are given to verify the proposed adaptive fuzzy control method.

An adaptive load balancing method for RFID middlewares based on the Standard Architecture (RFID 미들웨어 표준 아키텍처에 기반한 적응적 부하 분산 방법)

  • Park, Jae-Geol;Chae, Heung-Seok
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.73-86
    • /
    • 2008
  • Because of its capability of automatic identification of objects, RFID(Radio Frequency Identification) technologies have extended their application areas to logistics, healthcare, and food management system. Load balancing is a basic technique for improving scalability of systems by moving loads of overloaded middlewares to under loaded ones. Adaptive load balancing has been known to be effective for distributed systems of a large load variance under unpredictable situations. There are needs for applying load balancing to RFID middlewares because they must efficiently treat vast numbers of RFID tags which are collected from multiple RFID readers. Because there can be a large amount of variance in loads of RFID middlewares which are difficult to predict, it is desirable to consider adaptive load balancing approach for RFID middlewares, which can dynamically choose a proper load balancing strategy depending on the current load. This paper proposes an adaptive load balancing approach for RFID middlewares and presents its design and implementation. First we decide a performance model by a experiment with a real RFID middleware. Then, a set of proper load balancing strategies for high/medium/low system loads is determined from a simulation of various load balancing strategies based on the performance model.

Adaptive balancing of highly flexible rotors by using artificial neural networks

  • Saldarriaga, M. Villafane;Mahfoud, J.;Steffen, V. Jr.;Der Hagopian, J.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.507-515
    • /
    • 2009
  • The present work is an alternative methodology in order to balance a nonlinear highly flexible rotor by using neural networks. This procedure was developed aiming at improving the performance of classical balancing methods, which are developed in the context of linearity between acting forces and resulting displacements and are not well adapted to these situations. In this paper a fully experimental procedure using neural networks is implemented for dealing with the adaptive balancing of nonlinear rotors. The nonlinearity results from the large displacements measured due to the high flexibility of the foundation. A neural network based meta-model was developed to represent the system. The initialization of the learning procedure of the network is performed by using the influence coefficient method and the adaptive balancing strategy is prone to converge rapidly to a satisfactory solution. The methodology is tested successfully experimentally.

Balancing and Position Control of Inverted Pendulum System Using Hierarchical Adaptive Fuzzy Controller (계층적 적응 퍼지제어기법을 사용한 역진자시스템의 안정화 및 위치제어)

  • Kim, Yong-Tae;Lee, Hee-Jin;Kim, Dong-Yon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.164-167
    • /
    • 2004
  • In the paper is proposed a hierarchical adaptive fuzzy controller for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the hierarchical adaptive fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing, a forced disturbance generator which emulates heuristic control strategy, and a supervisory decision maker for the arbitration of two control objectives It is proved that all the signals in the overall system are bounded. Simulation results are given to verify the proposed adapt i ye fuzzy control method.

  • PDF

GA-based Adaptive Load Balancing Method in Distributed Systems

  • Lee, Seong-Hoon;Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • In the sender-initiated load balancing algorithms, the sender continues to send an unnecessary request message fur load transfer until a receiver is found while the system load is heavy. Meanwhile, in the receiver-initiated load balancing algorithms, the receiver continues to send an unnecessary request message for load acquisition until a sender is found while the system load is light. These unnecessary request messages result in inefficient communications, low CPU utilization, and low system throughput in distributed systems. To solve these problems, in this paper, we propose a genetic algorithm based approach fur improved sender-initiated and receiver-initiated load balancing. The proposed algorithm is used for new adaptive load balancing approach. Compared with the conventional sender-initiated and receiver-initiated load balancing algorithms, the proposed algorithm decreases the response time and increases the acceptance rate.

Adaptive Control for the Conventional Mode of Operation of MEMS Gyroscopes

  • Park, Sungsu;Roberto Horowitz
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.2-39
    • /
    • 2002
  • This paper presents adaptive add-on control algorithms for theconventional mode of operation of MEMS z-axis gyroscopes. This scheme is realized by adding an outer loop to a conventional force-balancing scheme that includes a parameter estimation algorithm. The parameter adaptation algorithm estimates the angular rate, identifies and compensates the quadrature error, and may permit on-line automatic mode tuning. The convergence and resolution analysis show that the proposed adaptive add-on control scheme prevents the angular rate estimate from being contaminated by the quadrature error, while keeping ideal resolution performance of a conventional force-balancing scheme.

  • PDF

Adaptive Load Balancing Scheme for Real-Time Video Stream Transmission in Mobile Environment (모바일 환경에서 실시간 비디오 스트림 전송을 위한 적응형 부하 조정 기법)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • We propose an adaptive load balancing scheme to transport real-time video streams efficiently in this paper. The playback buffer level of a video requesting client is high or low temporarily in mobile environment. This scheme attempts to allocate more network bandwidth to serve a video request with the lower buffer level preferentially. In this scheme, the amount of network bandwidth is dynamically allocated to the requesting clients according to their playback buffer levels in a distributed mobile system. In order to improve the quality of service and real-time performance of individual video playback, the proposed load balancing scheme tries to maximize the number of frames that are transported successfully to the client prior to their playback times. Fair services can also be provided to all the concurrent clients by making their playback situation more adaptive. The performance of this load balancing scheme is compared with that of other static load balancing scheme through extensive simulation experiments, resulting in the higher ratio of frames transmitted successfully within given deadlines.

Performance Counter Analysis for Effective Adaptive Load Balancing (효과적인 Adaptive Load Balancing을 위한 성능 지표 분석)

  • Lim, Yoo-Jin;Lee, Won-Q;Han, Young-Tae;Lee, Dong-Hoon;Choi, Eun-Mi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.143-146
    • /
    • 2002
  • 웹 서비스를 제공하는 분산 서버 시스템에서 각 서버의 부하 상태를 파악하여 처리해야 할 부하를 조절하여 주면 서버의 부하가 균등하게 되어 더 나은 성능을 얻을 수 있게 된다. 서버의 부하 상태는 시스템의 자원에 영향을 미치는 여러 가지 요소에 의하여 분석을 할 수 있다. 본 논문에서는 다양한 스트레스 테스트를 통하여 서버의 자원의 고갈을 나타내는 주요 성능 지표들을 변화 상태를 분석하였다. 고려된 성능지표로는 Available Memory 양, Page Read 수, Processor Utilization, Processor Queue Length, 네트웍으로 전달된 Transmitted Bytes, 연결된 Connection 개수이다. 실제로 이중 하나의 요소를 적용시켜서 ALBM (Adaptive Load Balancing Mechanism)을 실행을 하였을 때 일반 LVS Round Robin 보다 성능이 좋은 결과를 낳았다.

  • PDF

Adaptive Periodic MLB Algorithm for LTE Femtocell Networks (LTE 펨토셀 네트워크를 위한 적응적 주기의 MLB 알고리즘)

  • Kim, Woojoong;Lee, Jeong-Yoon;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.764-774
    • /
    • 2013
  • The number of users and data packets has increased in 4G cellular networks. Therefore, 4G cellular network providers suffer from the network capacity problem. In order to solve this problem, femtocell concept is suggested. It can reduce the coverage hole and enhance the QoS. However, only small number of femtocells experience the large amount of loads. To solve this problem, Mobility Load Balancing (MLB) algorithm is suggested, which is a kind of load balancing algorithm. To distribute the traffic load, MLB algorithm modifies the handover region. If the handover region is reduced by MLB algorithm, some cell edge users are compulsively handed over to neighbor femtocell. In this paper, we analyze the relation between MLB performing period and performance indicators. For example throughput and blocking probability is reduced, if period is decreased. On the contrast, if period is increased, the number of handover frequency is decreased. Using this relation, we suggest the adaptive periodic MLB algorithm. This algorithm includes the advantage of both long period and short period MLB algorithm, such as high throughput, the small number of handover frequency, and low blocking probability.

Modeling and Simulation of Efficient Load Balancing Algorithm on Distributed OCSP (분산 OCSP에서의 효율적인 로드 밸런싱 기법에 관한 모델링 및 시뮬레이션)

  • Choi Ji-Hye;Cho Tae Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.4
    • /
    • pp.43-53
    • /
    • 2004
  • The distributed OCSP (Online Certificate Status Protocol), composed of multiple responders, is a model that enhances the utilization of each responder and reduces the response time. In a multi-user distributed environment, load balancing mechanism must be developed for the improvement of the performance of the whole system. Conservative load balancing algorithms often ignore the communication cost of gathering the information of responders. As the number of request is increased, however, fail to consider the communication cost may cause serious problems since the communication time is too large to disregard. We propose an adaptive load balancing algorithm and evaluate the effectiveness by performing modeling and simulation. The principal advantage of new algorithm is in their simplicity: there is no need to maintain and process system state information. We evaluated the quality of load balancing achieved by the new algorithm by comparing the queue size of responders and analyzing the utilization of these responders. The simulation results show how efficiently load balancing is done with the new algorithm.

  • PDF