• Title/Summary/Keyword: adaptive array

Search Result 363, Processing Time 0.019 seconds

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

Effects of Prenatal and Restraint Stress on Astrocytes of Amygdala Complex of Rat: I. Effects on the Astrocytic Cell Body (출생 전 스트레스와 감금 스트레스가 흰쥐 편도복합체 별아교세포에 미치는 영향: I. 별아교세포의 세포체에 미치는 영향)

  • Lee, Ji-Yong;Choi, Byoung-Young;Kim, Dong-Heui;Jung, Won-Sug;Cho, Byung-Pil;Yang, Young-Chul
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.213-219
    • /
    • 2008
  • The plasticity of nervous system is generated not only due to changes in neurons but also due to changes in neuroglial cells. Astrocyte is important for maintaining the normal brain function and controlling the neuronal functions. The amygdala receives an array of important sensory information of danger signals. This information is further transduced and integrated to produce the highly adaptive emotion, fear. In this study, morphometric changes in the cell bodies of astrocytes in the amygdala, induced by prenatal stress and restraint stress were examined. For this purpose. rats were classified into 4 groups; control group (CON), only restraint-stressed (starting on P90 for 3 days) group (CONR), prenatally-stressed group (PNS), and prenatally and restraint (on P90 for 3 days) stressed group (PNSR). Astrocytes were verified with anti-GFAP immunohistochemistry, counter stained with methylene blue/azure II and were examined using the Neurolucida. Results showed that astrocytes in the amygdala of PNS rats had significantly larger cell bodies than did CON rats and this was enhanced further by restraint stress. Thus this data showed that hypertrophy of the astrocytic cell bodies of amygdala complex is induced by prenatal and restraint stress.

AT-DMB Reception Method with Eigen-space Beamforming Algorithm (고유 공간 빔형성 알고리즘을 이용한 AT-DMB 수신 방법)

  • Lee, Jae-Hong;Choi, Seung-Won
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.122-132
    • /
    • 2010
  • AT-DMB system has been developed to increase data rate up to double of conventional T-DMB in the same bandwidth while maintaining backward compatibility. The AT-DMB system adopted hierarchical modulation which adds BPSK or QPSK signal as enhancement layer to existing DQPSK signal. The enhancement layer signal should be small enough to maintain backward compatibility and to minimize the coverage loss of conventional T-DMB service coverage. But this causes the enhancement layer signal of AT-DMB susceptible to fading effect in transmission channel. A turbo code which has improved error correction capability than convolutional code, is applied to the enhancement layer signal of the AT-DMB system for compensating channel distortion. However there is a need for other solutions for better reception of AT-DMB signal in receiver side without increasing transmitting power. In this paper, we propose adaptive array antenna system with Eigen-space beamforming algorithm which benefits beamforming gain along with diversity gain. We analyzed the reception performances of AT-DMB system in indoor and mobile environments when this new smart antenna system and algorithm is introduced. The computer simulation results are presented along with analysis comments.