Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.
본 논문에서는 EM(Expectation-Maximization) 알고리즘을 이용한 자동적인 퍼지 규칙생성과 적응 뉴로-퍼지 제어기(Adaptive Neuro-Fuzzy Controller)의 설계를 제안한다. EM 알고리즘은 가우시안 혼합모델(Gaussian Mixture Model)의 최대우도추정(Maximum Likelihood Estimate)을 위해 사용되어지며 본 논문에서는 규칙생성을 위해 클러스터 중심을 추정한다. 추정된 클러스터는 ANFIS(Adaptive Neuro-Fuzzy Inference System)의 퍼지 규칙과 소속함수를 구축하는데 사용되어진다. 시뮬레이션으로 제안된 적응 뉴로-퍼지 제어기의 성능을 입증하기 위해 목욕물 온도 제어 시스템에 대해 다루고 기존 퍼지 제어기에 비해 적은 규칙의 수와 작은 값의 SAE(Sum of Absolute Error)으로 성능개선을 확인하였다.
We proposed a method to improve moving object detection capability of Gaussian Mixture Model by suggesting shape adaptive bidirectional block matching algorithm. This method achieves more accurate detection and tracking performance at various motion types such as slow, fast, and bimodal motions than that of Gaussian Mixture Model. Experimental results showed that the proposed method outperformed the conventional methods.
본 논문에서는 계층적 클러스터링과 GMM을 순차적으로 이용하여 최적의 파라미터를 추정하고 이를 뉴로-퍼지 모델의 초기 파리미터로 사용하여 모델의 성능 개선을 제안한다. 반복적인 시도 중 가장 좋은 파라미터를 선택하는 기존의 알고리즘 과 달리 계층적 클러스터링은 데이터들 간의 유클리디언 거리를 이용하여 클러스터를 생성하므로 반복적인 시도가 불필요하다. 또한 클러스터링 방법에 의해 퍼지 모델링을 행하므로 클러스터와 동일한 갯수의 적은 규칙을 갖는다. 제안된 방법의 유용함을 비선형 데이터인 Box-Jenkins의 가스로 예측 문제와 Sugeno의 비선형 시스템에 적용하여 이전의 연구보다 적은 규칙으로도 성능이 개선되는 것을 보였다.
The major problems of recent object tracking methods are related to the inefficient detection of moving objects due to occlusions, noisy background and inconsistent body motion. This paper presents a robust method for the detection and tracking of a moving in infrared animal videos. The tracking system is based on adaptive optical flow generation, Gaussian mixture and Kalman filtering. The adaptive Gaussian model of optical flow (GMOF) is used to extract foreground and noises are removed based on the object motion. Kalman filter enables the prediction of the object position in the presence of partial occlusions, and changes the size of the animal detected automatically along the image sequence. The presented method is evaluated in various environments of unstable background because of winds, and illuminations changes. The results show that our approach is more robust to background noises and performs better than previous methods.
연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명 조건의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델 (GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 제안되어 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 a(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값의 분산 등을 이용하여 학습률 a값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.
연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델(GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 ${\alpha}$(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값을 분산을 이용하여 학습률 ${\alpha}$값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.
The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the earliest time possible in a forest. GMMs are usually addressed by making the model adaptive so that its parameters can track changing illuminations and by making the model more complex so that it can represent multimodal backgrounds more accurately for smoke plume segmentation in the forest. Also, in this paper, we suggest a way to classify the smoke plumes via a feature extraction using HSL(Hue, Saturation and Lightness or Luminanace) color space analysis.
비디오 시퀀스에서 움직임 있는 객체의 실시간 검출 및 추적은 스마트 감시 시스템에서 매우 중요한 요소로 분류되고 있다. 본 논문에서 우리는 움직임이 있는 객체의 검출을 위해 클라우지우스 엔트로피와 적응적 가우시안 혼합모델을 사용한 객체 검출 방법을 제안한다. 먼저, 엔트로피의 증가는 일반적으로 불안전한 조건에서 많은 엔트로피의 변화가 발생한 경우 복잡성 및 객체의 움직임이 증가함을 의미한다. 만약 순간적으로 엔트로피 변화가 큰 화소는 움직임 객체에 속한다고 고려하여 움직임 분할 특성을 적용한다. 따라서 우리는 먼저 클라우지우스 엔트로피 이론을 적용하여 엔트로피에 대한 에너지 변화량을 dense 맵으로 변환한다. 두 번째로 우리는 움직임 객체를 검출하기 위해 적응적 가우시안 혼합 모델을 적용하였다. 실험 결과에서 제안된 방법이 효율적으로 움직임이 있는 객체를 검출할 수 있었다.
최근 스마트 도시를 구축하기 위해 무인 차량 관제 시스템의 보급이 활성화 되고 있다. 본 논문은 적응적 배경영상 모델링 방법을 이용한 불법주정차 무인단속시스템에 관한 것으로서, 적응적 가우시안 혼합 모델로 배경 영상을 모델링할 때, 이동 물체의 상황 변화에 따라 전역적으로 배경 영상을 업데이트하거나 국소적으로 배경 영상을 업데이트하는 방법에 대해 기술한다. 특히, 이동 물체가 배경 영상에 미치는 영향을 최소화하는 방법과 배경 영상을 정확하게 업데이트하기 위한 방법을 제안한다. 본 논문에서는 시스템의 구현을 통해 제안하는 시스템이 이동하고 있는 물체 또는 정지상태의 물체를 신속하고 정확하게 구분할 수 있음을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.