• Title/Summary/Keyword: acute renal injury

Search Result 146, Processing Time 0.024 seconds

Acute Kidney Injury after Dose-Titration of Liraglutide in an Obese Patient (비만 환자에서 리라글루티드 증량 과정에서 발생한 급성 신손상)

  • Lee, Hee Jin;Park, Hye Soon
    • Archives of Obesity and Metabolism
    • /
    • v.1 no.2
    • /
    • pp.78-82
    • /
    • 2022
  • Liraglutide (SaxendaR) is prescribed to induce and sustain weight loss in obese patients. The starting dose of liraglutide is 0.6 mg/day for 1 week, which is increased by 0.6 mg/day every week until the full maintenance dose of 3 mg/day is achieved. Such dose titration is needed to prevent side effects, which primarily include gastrointestinal problems such as nausea, diarrhea, constipation, vomiting, dyspepsia, and abdominal pain. A 35-year-old, reportedly healthy obese man receiving liraglutide treatment for obesity visited the emergency room complaining of generalized weakness and dizziness accompanied by repeated diarrhea and vomiting. He reported over 20 episodes of diarrhea starting the day after liraglutide dose escalation from 1.2 mg/day to 1.8 mg/day. Laboratory findings suggested pre-renal acute kidney injury, including serum creatinine 4.77 mg/dl, blood urea nitrogen (BUN) 37 mg/dl, estimated glomerular filtration rate (eGFR) 15 ml/min/1.73 m2, and Fractional excretion of sodium 0.08. After volume repletion therapy, his renal function recovered to a normal range with laboratory values of creatinine 1.08 mg/dl, BUN 14 mg/dl, and eGFR 88 ml/min/1.73 m2. This case emphasizes the need for caution when prescribing glucagon-like peptide-1 receptor agonists, including liraglutide, given the risk of serious renal impairments induced by volume depletion and dehydration through severe-grade diarrhea and vomiting.

Continuous Renal Replacement Therapy in Infants and Neonates (신생아와 영아의 지속적 신대체 요법)

  • Kim, Seong Heon;Shin, Jae Il
    • Childhood Kidney Diseases
    • /
    • v.18 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • Continuous renal replacement therapy (CRRT) has become the preferred dialysis modality to support critically ill children with acute kidney injury. As CRRT technology and clinical practice advances, experiences using CRRT on small infants and neonates have increased. In neonates with hyperammonemia or acute kidney injury during extracorporeal membrane oxygenation (ECMO) therapy, CRRT can be a safe and effective technique. However, there are many limitations of CRRT in neonates, including vascular access, bleeding complications, and lack of neonatespecific devices. This review discusses the basic principles of CRRT and the special considerations when using this technique in neonates and infants.

Bioactive Compounds for the Treatment of Renal Disease

  • Cho, Kang Su;Ko, In Kap;Yoo, James J.
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1015-1025
    • /
    • 2018
  • Kidney diseases including acute kidney injury and chronic kidney disease are among the largest health issues worldwide. Dialysis and kidney transplantation can replace a significant portion of renal function, however these treatments still have limitations. To overcome these shortcomings, a variety of innovative efforts have been introduced, including cell-based therapies. During the past decades, advances have been made in the stem cell and developmental biology, and tissue engineering. As part of such efforts, studies on renal cell therapy and artificial kidney developments have been conducted, and multiple therapeutic interventions have shown promise in the pre-clinical and clinical settings. More recently, therapeutic cell-secreting secretomes have emerged as a potential alternative to cell-based approaches. This approach involves the use of renotropic factors, such as growth factors and cytokines, that are produced by cells and these factors have shown effectiveness in facilitating kidney function recovery. This review focuses on the renotropic functions of bioactive compounds that provide protective and regenerative effects for kidney tissue repair, based on the available data in the literature.

Rhabdomyolysis Induced Acute Kidney Injury in a Patient with Leptospirosis (횡문근융해증에 의한 급성 신 손상이 동반된 렙토스피라증 1예)

  • Choi, Yoon-Jung;Park, Jeung-Min;Jung, Yo-Han;Nam, Jong-Ho;Chung, Hyun-Hee;Kim, Tae-Woo;Cho, Kyu-Hyang;Do, Jun-Young;Yun, Kyeung-Woo;Park, Jong-Won
    • Journal of Yeungnam Medical Science
    • /
    • v.28 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • Leptospirosis is a spirochetal infectious disease caused by $Leptospira$ $interrogans$, and may vary in degree from an asymptomatic infection to a severe and fatal illness. The kidney is one of the principal target organs of $Leptospira$. Renal disorders caused by $Leptospira$ infection vary from an abnonnality in urinalysis to acute kidney injury (AKI). Incidence of AKI in severe leptospirosis varies from 40% to 60%. AKI reflects the severity of leptospirosis and is generally accompanied by cholestatic jaundice. The pathophysiology of AKI in leptospirosis consists of hypovolemia, direct tubular toxicity, and rhabdomyolysis. Most patients with acute leptospirosis experience severe myalgias, and show laboratory evidence of mild rhabdomyolysis. However, occurrence of severe rhabdomyolysis is rare. We report here on a patient with leoptospirosis, who had severe rhabdomyolysis and acute kidney injury without jaundice.

  • PDF

Effective Biomarkers for Miniature Pig in Acute Kidney Injury Using Renal Ischemia-Reperfusion Model (미니돼지의 신허혈-재관류에 의한 급성신손상 모델에서의 유용한 바이오마커)

  • Kim, Se-Eun;Shim, Kyung-Mi;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.29 no.5
    • /
    • pp.372-376
    • /
    • 2012
  • Acute kidney injury (AKI) is a serious problem associated with high morbidity and mortality. Ischemia-reperfusion is an important cause of acute kidney injury. This study was performed to ascertain clinically useful biomarkers for the diagnosis of AKI. In three miniature pigs, AKI were induced by 60 minutes of bilateral renal ischemia by the clamping renal artery. Blood and urine samples were collected from the pigs prior to clamping (baseline) and 0, 1, 3 and 5 days post-clamping. Serum blood urea nitrogen (BUN), creatinine, sodium and uric acid were measured in serum and urine samples. Fractional excretion of sodium ($FE_{Na}$) and fractional excretion of uric acid ($FE_{UA}$) were calculated. Also, interleukin (IL)-6, IL-18, liver type fatty acid binding protein (L-FABP) and glutathione-S-transferase (GST) were detected by Western immunoblotting. Serum BUN and creatinine levels were increased significantly at day 1 post-clamping in all three miniature pigs. However, $FE_{Na}$ and $FE_{UA}$ showed marked individual differences. Western immunoblotting revealed significantly increased levels of IL-6, IL-18, L-FABP and GST in post-ischemic urine, compared to pre-clamping. While more research concerning the variance of $FE_{Na}$ and $FE_{UA}$ is needed, serum BUN, creatinine, IL-6, IL-18, L-FABP and GST may be sensitive urine biomarkers for diagnosis of AKI together with other biomarkers in the porcine ischemia-reperfusion model.

Effectiveness of inactivated hantavirus vaccine on the disease severity of hemorrhagic fever with renal syndrome

  • Yi, Yongjin;Park, Hayne;Jung, Jaehun
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.366-372
    • /
    • 2018
  • Background: An inactivated Hantaan virus vaccine (iHV) has been broadly used as a preventive strategy for hemorrhagic fever with renal syndrome (HFRS) by the South Korean Army. After the vaccination program was initiated, the overall incidence of HFRS cases was reduced in the military population. While there are about 400 HFRS cases annually, few studies have demonstrated the efficacy of the iHV in field settings. Therefore, this study aimed to evaluate the iHV efficacy on HFRS severity. Methods: From 2009 to 2017, HFRS cases were collected in South Korean Army hospitals along with patients' vaccination history. HFRS patients were classified retrospectively into two groups according to vaccination records: no history of iHV vaccination and valid vaccination. Vaccine efficacy on the severity of acute kidney injury (AKI) stage and dialysis events were investigated. Results: The effects of the iHV on renal injury severity in between 18 valid vaccinated and 110 non-vaccinated patients were respectively evaluated. In the valid vaccination group, six of the 18 HFRS patients (33.3%) had stage 3 AKI, compared to 60 of the 110 (54.5%) patients in the non-vaccination group. The iHV efficacy against disease progression ($VE_p$) was 58.1% (95% confidence interval, 31.3% to 88.0%). Conclusion: The iHV efficacy against the progression of HFRS failed to demonstrate statistically significant protection. However, different severity profiles were observed between the iHV and non-vaccination groups. Additional studies with larger populations are needed to demonstrate the effectiveness of the iHV in patients with HFRS.

Serious Bleeding Complication Due to the Use of Low-molecular-weight heparin to treat a Traumatic Patient with Acute Renal Failure (급성신부전이 발생한 중증 외상 환자에서 저분자량헤파린 투여 후 발생한 심각한 출혈 합병증)

  • Kyoung, Kyu-Hyouck;Kim, Woon-Won;Park, Sung-Jin;Kim, Ki-Hoon;Kim, Jin-Soo;Park, Jong-Kwon
    • Journal of Trauma and Injury
    • /
    • v.24 no.2
    • /
    • pp.164-167
    • /
    • 2011
  • Trauma is an important risk factor for a pulmonary thromboembolism, and anticoagulation is essential to prevent deep vein thrombosis (DVT) in patients with trauma. Low-molecular-weight heparin (LMWH) is excreted in the kidney; therefore, using LMWH in patients with renal insufficiency may increase the risk of bleeding complication. The following case describes a 55-year-old traffic accident victim who had massive bleeding and underwent a laparotomy for bleeding control. The patient had acute renal failure, and enoxaparin was administered for the prophylaxis of DVT. Although the patient suffered from serious complications such as pericardial hematoma, the patient recovered without sequellae and was discharged at day 84.

Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

  • Long, Rui-ting;Peng, Jun-bo;Huang, Li-li;Jiang, Gui-ping;Liao, Yue-juan;Sun, Hang;Hu, Yu-dong;Liao, Xiao-hui
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.893-905
    • /
    • 2019
  • Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.

Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion

  • Kim, Jee-In;Jang, Hee-Seong;Park, Kwon-Moo
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.629-634
    • /
    • 2010
  • Endotoxin including lipopolysaccharide (LPS) confers organ tolerance against subsequent challenge by ischemia and reperfusion (I/R) insult. The mechanisms underlying this powerful adaptive defense remain to be defined. Therefore, in this study we attempted to determine whether nitric oxide (NO) and its associated enzymes, inducible NOS (iNOS) and endothelial NOS (eNOS, a constitutive NOS), are associated with LPS-induced renal tolerance against I/R injury, using iNOS (iNOS knock-out) or eNOS (eNOS knock-out) gene-deleted mice. A systemic low dose of LPS pretreatment protected kidney against I/R injury. LPS treatment increased the activity and expression of iNOS, but not eNOS, in kidney tissue. LPS pretreatment in iNOS, but not eNOS, knock-out mice did not protect kidney against I/R injury. In conclusion, the kidney tolerance to I/R injury conferred by pretreatment with LPS is mediated by increased expression and activation of iNOS.

Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress

  • Uddin, Md Jamal;Pak, Eun Seon;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.567-575
    • /
    • 2018
  • Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.