• Title/Summary/Keyword: actuator tracking

Search Result 267, Processing Time 0.027 seconds

Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control

  • Kim, Byeongil;Washington, Gregory N.;Yoon, Hwan-Sik
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.623-635
    • /
    • 2013
  • This paper investigates application of a control algorithm called model predictive sliding mode control (MPSMC) to active vibration suppression of a cantilevered aluminum beam. MPSMC is a relatively new control algorithm where model predictive control is employed to enhance sliding mode control by enforcing the system to reach the sliding surface in an optimal manner. In previous studies, it was shown that MPSMC can be applied to reduce hysteretic effects of piezoelectric actuators in dynamic displacement tracking applications. In the current study, a cantilevered beam with unknown mass distribution is selected as an experimental test bed in order to verify the robustness of MPSMC in active vibration control applications. Experimental results show that MPSMC can reduce vibration of an aluminum cantilevered beam at least by 29% regardless of modified mass distribution.

Robust Servo Control of High Speed Optical Pickups (고속 광 픽업 장치의 강인 서보 제어)

  • 임승철;정태영
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.533-541
    • /
    • 1998
  • Recently, optical disk drives are increasingly demanded to have higher speed as well as high information density, especially for applications like CD ROM drives. To this end, improvement of their optical pickup structure and control is recognized the very challenging issue. In this paper, the pickup is first analytically modelled in a plane to describe its coupled auto-focusing and auto-tracking motions. Subsequently, the model is linearized and combined with actuator dynamics for the auto-focusing system. With its unmeasurable parameters being estimated based on experimental data, an approximate I-DOF linear model is obtained neglecting the coupling term. To design the high speed and robust positional servo controller realistic design specifications are addressed, and H control method is employed based on the approximate model. Finally, taking the pickup in a commerical high speed CD ROM drive as an example performance of the designed controller is verified through realtime experiments.

  • PDF

Pressure Control of a Piezoactuator-Driven Pneumatic Valve System (압전 작동기로 구동되는 공압 밸브의 압력제어)

  • Cho, M.S.;Yoo, J.K.;Choi, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.554-558
    • /
    • 2000
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a sliding mode controller which is known to be robust to uncertainties such as disturbance is formulated in order to achieve accurate regulating and tracking control of the desired pressure. The controller is experimentally realized and control performances for various pressure trajectories are presented in time domain. The control bandwidth of the valve system which directly represents the fastness is also evaluated in the frequency domain.

  • PDF

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

Track Seek Dynamics of HDD Suspension System Considering Air Bearing Effects (공기 베어링 효과를 고려한 HDD 서스펜션 시스템의 트랙탐색 동특성)

  • Kim, Jeong-Ju;Park, No-Yeol;Gang, Tae-Sik;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.198-205
    • /
    • 2001
  • Recently, almost all hard disk drives employ the rotary actuator system. The performance of an HDD depends on the accuracy and speed of tracking motion. We study the dynamics of head-suspension assembly during track seek. We develop the numerical analysis program to study the dynamic characteristics of HDD suspension system considering the air bearing effects. The track seek simulation by using the developed program helps to estimate the effect of the suspension vibration on the air bearing dynamics. We calculate the behaviour of the air bearing for the given track seek profile and calculate the positioning error during track seek process due to the lateral deflection of the suspension.

Identification of Dynamic Characteristics of Gimbals for Line-of-Sight Stabilization Using Signal Compression Method (신호 압축법을 이용한 시선안정화 제어용 짐벌의 동특성 규명)

  • Kim, Moon-Sik;Yoo, Gi-Sung;Yun, Jung-Joo;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.72-78
    • /
    • 2008
  • The line-of-sight(LOS) stabilization system is a precision electro-mechanical gimbals assembly for suppressing vibration due to its environment and tracking the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. The controller consists of a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated by the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. The quasi-impulse response through linear element included in the gimbals could be obtained by the signal compression method. The unknown parameter of the linear element could be estimated as comparing the bode plots for impulse response from gimbals with them from model's response.

Optical Axis Auto-adjustment of Objective Lens in Optical Disc Drives (광디스크 드라이브에서의 대물렌즈 자동광축보정)

  • Ryoo, Jung-Rae;Moon, Jung-Ho;Cho, Ju-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.558-563
    • /
    • 2008
  • Optical axis misalignment, which represents the position deviation of the objective lens from the optical axis, is an inevitable assembly error in an optical pick-up. Since the laser power intensity varies with respect to the distance from the optical axis, the misalignment leads to variation of the laser spot power intensity, which is one of the critical factors increasing data bit-error-rate in optical disc drives. In this paper, an auto-adjustment scheme for optical axis alignment is proposed to eliminate the undesirable variation of the laser spot power intensity in optical disc drives. An envelope of the data RF signal is extracted and utilized to detect the optical axis misalignment. Then an adjustment input is added to the driving input of the tracking actuator to shift the objective lens to the optical axis. Finally, the feasibility is verified by experiments.

Tracking control for linear systems with actuator saturation (포화구동기를 갖는 선형시스템의 추종제어)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.53-54
    • /
    • 2007
  • 이 논문에서는 구동기 용량제한을 갖는 선형시스템에 대한 저이득 추종 제어기 설계 문제를 다룬다. 주어진 시스템에 대한 추종 기준입력은 크기와 변화율에 제한을 갖는 시간에 따라 변화하는 일반적인 입력을 고려하며 제어기 설계 과정은 추종성능을 향상시키기 위한 2단계의 시스템 등가변환으로 구성된다. 먼저 제1단계에서는 잘 알려진 SVD(Singular Value Decomposition)의 원리를 활용하여 추종출력과 관련된 상태를 효율적으로 분리한 후 추종에러를 상태방정식 내에 포함하는 제2단계의 시스템 변환을 통하여 추종성능의 향상을 꾀한다. 제안된 추종 제어기의 설계 조건은 모두 LMI 형태로 표현 가능하며 잘 알려진 수치예제를 통하여 제안된 설계 기법의 효용성을 예시한다.

  • PDF

Human sensory feedback research in the armstrong laboratory

  • Weisenberger, Janet M.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.83-100
    • /
    • 1997
  • The Human Sensory Feedback Laboratory, park of the Armstrong Laboratory at Wright-Patterson Air Force Base, Ohio, is involved in the development and evaluation of systems that provide sensory feedback to the human operator in telerobotic and virtual environment applications. Specific projects underway in the laboratory are primarily concerned with the information provided by force and vibrotactile feedback to the operator in dextrous manipulation tasks. Four specific research projects are described in the present report. These include : 1) experiments evaluating a 30-element fingertip display, which employs a titanium-nickel shape memory alloy actuator design to provide vibrotactile feedback about object shape and surface texture ; 2) of a fingertip force-feedback display for 3-dimensional information about object shape and suface texture ; 3) use of a force- feedback joystic to provide "force tunnel" information in pilot pursuit tracking tasks ; and 4) evaluations of a 7 degree-of-freedom exoskeleton used to control a robotic arm. Both basic and applied research questions are discussed.

  • PDF

A Development of Sub-Controller for Game Motion Simulator (게임기용 운동재현기의 하위제어기 설계)

  • Jung, Gyu-Hong;Suh, Chung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.146-151
    • /
    • 2001
  • The Grand-Touring is a game motion simulator that simulates the race-car driving motion with three hydraulic cylinders which connect the platform and base in parallel. Its motion control system consists of the PC-based main controller and micro-controller based sub-controller. The former one process the dynamic image of race-car in response to the driver's action and computes the reference command for each cylinder and the latter one is designed for the tracking control of hydraulic cylinder and interfacing the auxiliary signals between various sensors/actuator and main controller. In this research, we developed the sub-controller that implements the required functions of Grand-Touring and prove the overall performance with experiments.

  • PDF