• Title/Summary/Keyword: actual smoke exhaust

Search Result 8, Processing Time 0.021 seconds

A Study on the Actual Smoke Exhaust Condition and Improvement Program of Special Escape Stair (건축물 특별피난계단의 배연 실태 및 개선방안에 관한 연구)

  • Rie, Dong-Ho;Kim, Ha-Young;Kim, Jung-Yup;Shim, Kyu-Hyung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.286-289
    • /
    • 2008
  • In this study, we have survey of the actual smoke exhaust condition and improvement program in special escape stair. We have collected and analysed the survey view take 50 professional advice. Domestic a technical and legal standard is rated as compared with an advanced countries to $40{\sim}60%$. Hazard must be improved a security with the evacuation where the standard of present time is safe the reply with 64% to appear it was analyzed with the fact that the improvement which it follows hereupon is necessary.

  • PDF

Additional Improvement and Evaluation of Exhaust Ventilation Systems at Small and Medium Sized Enterprise (중.소규모 사업장의 국소배기장치 설치 실태와 문제점 및 개선방안)

  • Lim, Seong-Keun;Park, Doo-Yong;Kim, Won-Ki;Kim, Soo-Geun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Objectives : The purposes of this study were to evaluate exhaust ventilation systems(EVSs) and to suggest problems and improvements. Methods : For 50 small and medium-sized enterprises, we carried out evaluation of EVSs. We evaluated hoods with smoke tester and measurement of capture velocity. In addition, we used several indicators for performance evaluation designed in this study. Results : 1. Based on the smoke flow pattern and the criteria of occupational health and safety act, 67.8% of hoods were rated 'good' level at smoke test whereas 26.3% were rated 'good' level at measurement of capture velocity. 2. 29.3% of hoods, of which ratio of measured actual air flow at hood(Qah) to required ideal exhaust air flow at hood(Qih) was 1 or more, were rated 'good' level. 3. The % of EVS, of which ratio of measured actual air flow at stack(Qast) to total required ideal exhaust air flow at hood(Qith) was 1 or more, was 29.0%. 4. For the ratio of measured Qast to existing air flow at fan(Qfan), only 5% of EVSs were 1 or more and 26.0% were 0.8 or more but less than 1.0. 5. For the ratio of measured Qast to total measured actual exhaust air flow at hood(Qath), 74.0% were 0.8 or more but less than 1.0. 6. The percentage of EVS, of which ratio of total measured Qath to existing Qfan was 0.8 or more, was 19.0%. 7. The percentage of EVS, of which ratio of total measured Qath to total required ideal exhaust Qith was 1 or more, was 26.0%. 8. For the comprehensive evaluation indicators designed in this study, 29.0% were 0.8 or more. Conclusions : We found that few exhaust local ventilations at small and medium-sized enterprises were rated 'good' level and that most exhaust local ventilations had 'poor' design and installation. Therefore, relevant professional manpower and enterprises have to construct exhaust local ventilation where it is needed, and technical guidance and economic support are needed to improve 'poor' exhaust local ventilation after self-evaluation.

A Study on the Improvement of Smoke Probe Performance in Diesel Vehicles Using Korean 147 Test Method (한국형 147검사 방법을 이용한 디젤자동차의 매연프로브 성능 향상 연구)

  • Kim, Jae-Yeol;Chae, Il-Seok;Kim, Sang yu;Yang, Dong Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2021
  • In the previous study, a study was conducted to improve the exhaust gas intake efficiency by improving the existing soot measurement probe in the shape and angle of the exhaust port. As a result, it can be seen that the smoke measurement performance according to the shape and angle is improved. In previous studies, the performance of the soot probe was not confirmed for the Korean KD 147 mode, which has a low suction flow rate and a long inspection time. So, we would like to confirm the improvement of the smoke probe performance of the Korean KD 147 mode, which is close to the actual driving conditions. The probe used in this study is another type of probe, and has a circular ring shape instead of a rib and variable center position unit, so the probe center hole is located close to the center of the exhaust pipe.

The Effect of an Aromatic Content on Exhaust Emissions in Low Temperature Diesel Combustion (저온 디젤 연소에서 연료의 방향족 성분이 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2011
  • This study is to investigate the effect of an aromatic content in high cetane number (CN) fuels on exhaust emissions under low temperature diesel combustion, which expands the previous research about an aromatic content in low CN fuels. A 1.9L common rail direct injection diesel engine was run at 1500 rpm 2.6 bar BMEP with four fuel sets: an aromatic content of 20% (A20) or 45% (A45) with CN30, i.e. low CN fuels, and CN55, i.e. high CN fuels. Given experimental conditions, the trend of exhaust emissions in high CN fuels was inconsistent with that of low CN fuels which all produced nearly zero smoke but higher NOx for the high aromatic fuel (CN30-A45). For high CN fuels, however, the low aromatic fuel (CN55-A20) produced lower smoke than the high one (CN55-A45) while NOx was similar to each other. The cause of this discrepancy between high CN and low CN fuels is unclear whether it comes from that CN may be a dominant factor to govern exhaust emissions rather than an aromatic content or that the actual CN value of CN55-A45 is lower than CN55-A20. More decent fuel matrix should be prepared and further experiments are needed to confirm it.

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.

A Study on the Convective Characteristics of The Gilt-bronze Incense Burner of Baekje through the Incense-Burning Experiment (분향실험을 통한 백제금동대향로 내부 대류특성 연구)

  • Kim, Seon Yeong;Hwang, Hyun Sung
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.470-479
    • /
    • 2019
  • The objective of this study is to identify the reason behind the expansion of exhaust holes and inhalational holes through high-definition filming and measurement of The Gilt-bronze Incense Burner of Baekje. In the proposed experiment, based on the original data obtained after a precise three-dimensional (3D) scan of the said incense burner, the precision replica and the commercial replica of the incense burner were subjected to a 3D scan. The overall shape and detailed patterns were subsequently compared with the original data. Furthermore, the incense-burning experiment was conducted according to the sizes and opened or unopened states of the exhaust and inhalational holes by employing the precision replica of the actual real relic for examining the internal structure of the lid and for studying the sizes and locations of the smoke holes. The results indicate that depending on the sizes of the exhaust and inhalational holes, the lower-line air intake holes can cause incomplete combustion in the incense burner. Depending on the opened or unopened states of the exhaust and inhalational holes, the phoenix air exhaust holes and upper-line air exhaust holes play a primary role in releasing the smoke, whereas the lower-line air intake holes play a primary role in smoke inhalation.

COMPUTER SIMULATION OF TRACTOR PERFORMANCE WITH REGARD TO ENERGY SAVING AND POLLUTION REDUCING

  • Zou, Cheng;Sakai, Jun;Nagata, Masateru
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1110-1116
    • /
    • 1993
  • A study on optimum operation performances of power efficiency, economy and exhaust emissions for a tractor was conducted. A mathematical model of multiple degree polynomial equation was applied to established the function of solid multiple parameter curves for specific fuel consumption (ge), cabon monoxide (CO) ,hydrcarbons (HC) and cabonaceous smoke (Rb). The optimum operation theorems for economy operation indicated by ge and for exhaust emissions described by Co , HC and Rb were obtained from analytical method and performance test data. The optimum operation theorems could exhibit optimum operation working points, curves, and regions. The optimum matching relations of engine speed and transmission parameters were analyzed by using computer simulation methods in accordance with the tractor specifications , actual farm working conditions in a typical drawbar pull work such as plowing , the optimum operation objective function, the ideal transmission ratio, practical gear shif ing positions and practical travel speed of the tractor TN55 medel. The results of the anlayzes indicated clearly that the optimum power efficient operation, energy saving and pollution reducing would be realized if the tractor would be operated according to theoptimum operation methods.

  • PDF

A Model Experiment Study to Secure the Straight Line Distance between the Air Inlet and Exhaust Section of the Living Room (거실제연설비중 공기유입구와 배출구간 직선거리 확보를 위한 모형실험연구)

  • Saeng-Gon Lee;Se-Hong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.439-450
    • /
    • 2023
  • Purpose: When conducting fire inspections in Korea, there are objects that violate the fire protection regulations that require a straight line distance of more than 5m between the air inlet and the discharge section if the floor area is less than 400m2, and this paper analyzes the reasons and conducts a model experimental study to support the need for related fire protection regulations. Method: Domestic firefighting objects were investigated and confirmed, domestic and foreign papers, policies, and laws and regulations were examined, and spaces with a straight line distance of less than 5m and more than 5m between the air inlet and discharge section were selected and analyzed through model experiments in a living room of less than 400m2 . Result: When examining the domestic fire protection regulations (NFPCNational Fire Perpormance Code), the separation distance between the air inlet and the outlet is more than 5m when the floor area is less than 400m2 , but as a result of the actual investigation, it was confirmed that there are firefighting objects that cannot keep the separation distance. In addition, when a paper review of overseas fire protection regulations for a straight line distance of more than 5m showed that there was no regulation on the straight line distance between the air inlet and the discharge section, the model experiment showed that the discharge speed was better when the straight line distance between the air inlet and the discharge section was more than 5m than when it was less than 5m. Conclusions: In this study, when examining overseas fire laws and regulations by comparing the performance of the fire protection ratio for the straight line distance between the air inlet and the exhaust section, there is no mandatory regulation for the straight line distance, but the domestic fire protection regulations (NFPCNational Fire Perpormance Code) require more than 5m. It is hoped that this will be reflected in the design stage in the future, and a foundation will be laid to reduce the responsibility and burden of fire superintendents.