기존의 균등배분, 마코위츠, Recurrent Reinforcement Learning 방법들은 수익들을 최대화하거나 위험을 최소화하고, Risk Budgeting 방법은 각 자산에 목표 리스크를 배분하여 최적의 포트폴리오를 찾는다. 그러나 이 방법들은 미래의 최적화된 포트폴리오를 잘 찾아주지 못하는 문제점들이 있다. 본 논문은 자산 배분을 위한 Deterministic Policy Gradient 기반의 Actor Critic 모델을 개발하였고, 기존의 방법들보다 성능이 우수함을 검증한다.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.205-211
/
2024
Effective warehouse management requires advanced resource planning to optimize profits and space. Robots offer a promising solution, but their effectiveness relies on embedded artificial intelligence. Multi-agent reinforcement learning (MARL) enhances robot intelligence in these environments. This study explores various MARL algorithms using the Multi-Robot Warehouse Environment (RWARE) to determine their suitability for warehouse resource planning. Our findings show that cooperative MARL is essential for effective warehouse management. IA2C outperforms MAA2C and VDA2C on smaller maps, while VDA2C excels on larger maps. IA2C's decentralized approach, focusing on cooperation over collaboration, allows for higher reward collection in smaller environments. However, as map size increases, reward collection decreases due to the need for extensive exploration. This study highlights the importance of selecting the appropriate MARL algorithm based on the specific warehouse environment's requirements and scale.
최근에 국내외의 인공지능 분야에서는, 강화학습(reinforcement learning)에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 능동형 현가장치(active-suspension)의 제어를 위하여 RLS 기반 NAC(natural actor-critic)을 활용한 강화학습 기법을 적용해보고, 그 성능을 시뮬레이션을 통해 확인해본다.
The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.
강화 학습은 변화하는 환경에서의 최적의 보상을 얻을 수 있는 행동을 결정하기 위한 정책을 얻는 기계 학습 기법이다. 하지만 기존에 연구되어 온 강화 학습은 불확실하고 연속적인 실제 환경에서 최적의 행동을 얻기 위해 발생되는 높은 계산 복잡도 문제와 학습된 결과를 얻기 위해서는 많은 시간이 소요 된다는 문제점을 가지고 있다. 앞에서 언급한 문제를 해결하기 위해, 높은 계산 복잡도 문제를 해결을 위해서는 강화 학습을 구성하는 가치 함수와 정책을 독립적으로 구성하는 AC(actor-critic) 기법이 제안되었다. 그리고 빠른 학습 결과를 얻기 위해 기 학습된 지식을 새로운 환경에서 이용하여 기존 학습보다 빠르게 학습 결과를 얻을 수 있는 전이 학습(transfer learning) 기법이 제안되었다. 본 논문에서는 기존에 연구되어 왔던 기계 학습 기법의 향상 기법인 AC 기법과 전이 학습 기법에 대해 소개하고, 이를 무선 액세스 네트워크 환경에서 기지국 상태 조정을 위해 적용되고 있는 사례를 소개한다.
In this paper, we present a learning platform for robotic grasping in real world, in which actor-critic deep reinforcement learning is employed to directly learn the grasping skill from raw image pixels and rarely observed rewards. This is a challenging task because existing algorithms based on deep reinforcement learning require an extensive number of training data or massive computational cost so that they cannot be affordable in real world settings. To address this problems, the proposed learning platform basically consists of two training phases; a learning phase in simulator and subsequent learning in real world. Here, main processing blocks in the platform are extraction of latent vector based on state representation learning and disentanglement of a raw image, generation of adapted synthetic image using generative adversarial networks, and object detection and arm segmentation for the disentanglement. We demonstrate the effectiveness of this approach in a real environment.
The IRPO(Intensive Randomized Policy Optimizer) algorithm is a recently developed tool in the area of reinforcement leaming. And it has been shown to be very successful in several application problems. To compare with a general RL method, IRPO has some difference in that policy utilizes the entire history of agent -environment interaction. The policy is derived from the history directly, not through any kind of a model of the environment. In this paper, we consider a robot-control problem utilizing a IRPO algorithm. We also developed a MATLAH-based animation program, by which the effectiveness of the training algorithms were observed.
In this paper, we propose a logical control-based actor-critic algorithm as an efficient approach for the approximation of the capacitated fab scheduling problem. We apply the average reward temporal-difference learning method for estimating the relative value functions of system states, while avoiding deadlock situation by Banker's algorithm. We consider the Intel mini-fab re-entrant line for the evaluation of the suggested algorithm and perform a numerical experiment by generating some sample system configurations randomly. We show that the suggested method has a prominent performance compared to other well-known heuristics.
제어 분야의 가장 기초적인 시스템인 Rotary Inverted Pendulum 을 제어하기 위하여, 본 논문에서는 강화학습에서 Deep Q-Network 과 함께 대표적인 알고리즘으로 알려진 Asynchronous Advantage Actor-Critic 을 활용하여 다중 디바이스 제어를 설계한다. Deep Q-Network 알고리즘을 활용한 기존 연구와 동일한 방식으로 실 세계의 물리 에이전트와 가상 환경을 맵핑시키며, 스위치를 통하여 로컬 에이전트와 글로벌 네트워크 간 통신을 구성한다. 본 논문에서는 분산 Asynchronous Advantage Actor-Critic 을 이용함으로써 실 세계의 다중 에이전트 제어를 위한 강화 학습의 활용 가능성을 조명한다.
Mobile edge computing (MEC), which enables mobile terminals to offload computational tasks to a server located at the user's edge, is considered an effective way to reduce the heavy computational burden and achieve efficient computational offloading. In this paper, we study a multi-user MEC system in which multiple user devices (UEs) can offload computation to the MEC server via a wireless channel. To solve the resource allocation and task offloading problem, we take the total cost of latency and energy consumption of all UEs as our optimization objective. To minimize the total cost of the considered MEC system, we propose an DRL-based method to solve the resource allocation problem in wireless MEC. Specifically, we propose a Asynchronous Advantage Actor-Critic (A3C)-based scheme. Asynchronous Advantage Actor-Critic (A3C) is applied to this framework and compared with DQN, and Double Q-Learning simulation results show that this scheme significantly reduces the total cost compared to other resource allocation schemes
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.