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Abstract  

 Effective warehouse management requires advanced resource planning to optimize profits and space. 

Robots offer a promising solution, but their effectiveness relies on embedded artificial intelligence. Multi-

agent reinforcement learning (MARL) enhances robot intelligence in these environments. This study explores 

various MARL algorithms using the Multi-Robot Warehouse Environment (RWARE) to determine their 

suitability for warehouse resource planning. Our findings show that cooperative MARL is essential for 

effective warehouse management. IA2C outperforms MAA2C and VDA2C on smaller maps, while VDA2C 

excels on larger maps. IA2C’s decentralized approach, focusing on cooperation over collaboration, allows 

for higher reward collection in smaller environments. However, as map size increases, reward collection 

decreases due to the need for extensive exploration. This study highlights the importance of selecting the 

appropriate MARL algorithm based on the specific warehouse environment's requirements and scale. 
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1. Introduction 

In the development of modern business, supply chain management has become increasingly important. With 

the advancement of technology, businesses have shifted their focus from traditional brick-and-mortar retail 

stores to online marketplaces. This transition has led to a greater emphasis on managing stock in warehouses 

rather than in physical stores. Consequently, businesses must now concentrate on the efficient management 

and delivery of goods based on online orders [1]. 

Managing goods in a warehouse presents distinct challenges compared to retail stores, requiring effective 

stock planning and mobilization to maintain space and resource efficiency. Typically, this planning is achieved 

through business resource planning methods [2]. The actual physical implementation in warehouses is still 

largely manual, relying on human labor. This manual approach necessitates a large workforce and considerable 

space for mobilization, which can impact business profits and is considered inefficient. 
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Large companies have begun using robots to replace humans in managing and mobilizing warehouse 

products. Robots can maximize the efficiency of movement and storage space. Although the initial investment 

in robots is high, the costs can be recouped over time through improved efficiency. Additionally, robots provide 

enhanced safety and accuracy as they operate according to predefined programs. The effectiveness of robots 

depends on the intelligence embedded within them [3]. However, robots for warehouse management must 

utilize artificial intelligence (AI) to make decisions and take actions based on their environment [3], [4]. For 

this purpose, neural networks, specifically reinforcement learning, are essential. The most suitable AI approach 

for this case is multi-agent reinforcement learning (MARL) [6]. 

This research aims to identify the most suitable type of multi-agent reinforcement learning for managing the 

mobilization of goods in warehouses. MARL can be categorized as cooperative and competitive behaviors. 

Cooperative MARL involves agents working together as a team, while competitive MARL involves agents 

competing against each other [7]. Within cooperative MARL, there are two distinct approaches: collaboration 

and cooperation. Collaboration involves agents working towards a shared goal, whereas cooperation involves 

supporting each other to achieve individual goals. Although similar, these approaches differ in their emphasis 

on teamwork. This research seeks to determine which MARL behavior—collaboration or cooperation—is 

most effective for warehouse management. 

 

2. Literature Review 

2.1 Multi-agent Reinforcement Learning (MARL) 

Multi-agent reinforcement learning (MARL) has gained significant attention recently due to its ability to 

model and solve complex problems involving multiple interacting agents. MARL extends traditional single-

agent reinforcement learning to environments where multiple agents learn and make decisions simultaneously. 

This approach is particularly useful when agents must cooperate or compete to achieve their objectives. 

Notable advancements in MARL have focused on developing algorithms that can handle the challenges of 

non-stationarity, scalability, and partial observability. For instance, developing the Proximal Policy 

Optimization (PPO) algorithm and its variants has influenced MARL research. [8] introduced PPO, which 

balances exploration and exploitation while ensuring stable and efficient policy updates. More recent works 

have extended PPO to multi-agent settings, demonstrating its efficacy in diverse applications such as robotic 

control and strategic games [9]. 

 

2.2 Cooperative and Competitive Behavior in MARL 

Studying cooperative and competitive behaviors in MARL is crucial for understanding how agents interact 

within shared environments. Cooperative behaviors involve agents working together to maximize a reward, 

while competitive behaviors involve agents striving to outperform each other. These dynamics can 

significantly impact the learning process and system performance. Research by [10] provided a comprehensive 

survey of MARL methods, highlighting the distinctions between cooperative and competitive frameworks. 

They emphasized the importance of designing reward structures and communication protocols that facilitate 

effective agent collaboration. Further research by [11] introduced the Multi-Agent Deep Deterministic Policy 

Gradient (MADDPG) algorithm, which is widely adopted for cooperative and competitive tasks. MADDPG 

allows agents to learn decentralized policies in continuous action spaces, making it suitable for complex, real-

world applications. 
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2.3 Distinguishing Collaboration and Cooperation Goals in Cooperative Behavior 

Within the realm of cooperative MARL, it is essential to distinguish between collaboration and cooperation 

goals. Collaboration involves agents working jointly towards a common objective, often requiring explicit 

communication and coordination. In contrast, cooperation involves agents pursuing individual goals aligned 

or beneficial to the group, often relying on implicit coordination. The foundational work distinguishing these 

concepts, though more recent studies have further explored their implications in MARL contexts [12]. Shared 

rewards and joint action spaces are typical in collaboration, whereas cooperation may involve shared or 

individual rewards focusing on complementary actions [13]. Researchers have developed various frameworks 

to study these dynamics. For example, [14] introduced the concept of counterfactual regret minimization in 

collaborative settings, which has been instrumental in developing algorithms that can effectively balance 

collaborative and cooperative strategies [7]. 

 

3. Methodology 

3.1 System and Environment 

The experiments will be conducted using the Multi-Robot Warehouse Environment (RWARE), which offers 

four predefined layouts: tiny, small, medium, and large. This study will analyze algorithms' performance across 

the four layouts, running each algorithm for 4000 episodes. In this research the reward discount is 1, means no 

discount. The experiment will be conducted in high performance computer with Intel Core i9-10900x CPU, 

two NVIDIA GeForce RTX 4090 GPU, 128 GB DDR5 RAM. 

The Multi-Robot Warehouse Environment (RWARE) simulates warehouse settings where agents (robots) 

are tasked with delivering requested boxes (products) to a designated workstation. RWARE employs a sparse 

reward system, meaning agents receive a reward only when they successfully deliver and return boxes to the 

shelves [15]. Each completed task earns the agents 1 point, incentivizing efficient and accurate performance. 

The appearance of ready products on shelves is randomized, adding an element of unpredictability and 

challenge to the environment. Agents have five possible actions: turn left, turn right, move forward, load, and 

unload boxes. Turning left or right changes the agent's direction, while moving forward advances the agent. 

Loading and unloading actions are performed when the agent is positioned on the shelf tiles. RWARE functions 

as a partial observation Markov decision process (POMDP) environment, where agents can observe only a 

limited area—a 3x3 grid centered around themselves. This limited visibility requires agents to make decisions 

based on incomplete information, mimicking real-world scenarios where full visibility is rarely available. The 

RWARE environment shown in Figure 1.  

 

 

Figure 1. RWARE Environment 
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3.2 Independent Synchronous Advantage Actor-Critic 

The Independent Synchronous Advantage Actor-Critic (IA2C) algorithm is a decentralized variant of the 

Advantage Actor-Critic (A2C) algorithm tailored for multi-agent systems. In an independent learning 

framework, each agent operates with its own actor and critic networks, enabling decentralized training. Each 

agent independently evaluates its policy and value function without relying on a central controller or shared 

information [16]. This synchronous action ensures that all agents make decisions and take steps simultaneously, 

maintaining coordination in their operations. The critic learning (update) function works as follows: 

𝜙𝑘+1 = arg⁡𝑚𝑖𝑛
𝜙

1

|𝒟𝑘|𝑇
∑ ⁡
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∑⁡
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^
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2 
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The advantage function of the IA2C algorithm works as follows: 

𝐴𝑡 = 𝑟𝑡+1 + 𝜆𝑉𝜙(𝑜𝑡+1) − 𝑉𝜙(𝑜𝑡) (2) 

The actor (policy) learning works as follows: 

∇𝜃𝐽(𝜃) ∼ ∑ ⁡

𝑇−1

𝑡=0

∇𝜃log⁡ 𝜋𝜃(𝑢𝑡|𝑜𝑡)𝐴𝑡 
(3) 

 

The selection of the IA2C algorithm for this research is motivated by its simplicity and effectiveness. The 

straightforward nature of IA2C makes it a suitable candidate for initial experiments, allowing researchers to 

establish a baseline performance level. 

 

3.3 Multi-Agent Advantage Actor-Critic 

The Multi-Agent Advantage Actor-Critic (MAA2C) algorithm implements the A2C algorithm that follows 

the centralized training and decentralized execution (CTDE) paradigm. In CTDE, agents share information 

during the training phase to enhance learning, but their policies during execution are based solely on their local 

observations. This approach allows agents to benefit from shared experiences and knowledge while 

maintaining independence during operation [11]. The critic learning (update) function works as follows: 

𝜙𝑘+1 = arg⁡𝑚𝑖𝑛
𝜙
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The advantage function of the MAA2C algorithm works as follows: 

𝐴𝑡 = 𝑟𝑡+1 + 𝜆𝑉𝜙(𝑜𝑡+1, 𝑠𝑡+1, 𝐮𝐭+𝟏
− ) − 𝑉𝜙(𝑜𝑡, 𝑠𝑡 , 𝐮𝐭

−) (5) 

 

The key difference between MAAC and the Independent Advantage Actor-Critic (IA2C) algorithm lies in 

handling the critic update function and advantage function. In MAAC, the critic update and advantage function 

consider the actions of all agents, denoted as 𝐮𝐭
−. 

 

3.4 Value Decomposition Advantage Actor-Critic 

The Value Decomposition Advantage Actor-Critic (VDA2C) algorithm extends the A2C framework for 

multi-agent systems. VDA2C leverages the concept of value decomposition, which breaks down the global 

value function into individual components corresponding to each agent. This approach facilitates more 

effective learning and coordination among agents by focusing on the contribution of each agent to the overall 

value function [17]. The critic mixing function works as shown in (7), and therefore, the mixed critic learning 

function, as shown in (8), as follows: 
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The advantage function of the VDA2C algorithm works as follows: 

𝐴𝑡 = 𝑟𝑡+1 + 𝜆𝑉𝑡𝑜𝑡
𝑡+1 − 𝑉𝑡𝑜𝑡

𝑡  (8) 

 

The core idea behind VDA2C is to decompose the global value function into additive value functions for 

each agent. This decomposition helps understand each agent's contribution to the total reward.  

 

4. Result and Discussion 

 

 

 

Figure 2. Experiment Results 

The experiment shows that IA2C performs better than MAA2C and VDA2C on the tiny, small, and medium 

maps. This outcome is attributed to IA2C's use of a decentralized (independent) Actor-Critic, in contrast to the 

centralized critic employed by the other algorithms during the training process. The agents accumulate more 

rewards on smaller maps due to the reduced space and simpler goal achievement. 

 

5. Conclusion 

This research has demonstrated that a cooperative multi-agent reinforcement learning (MARL) approach is 

essential for managing warehouse environments like RWARE. Our experiments revealed that the IA2C 

algorithm outperformed MAA2C and VDA2C on tiny, small, and medium maps. However, on the large map, 

VDA2C showed superior performance. The results indicate that IA2C's independent learning framework, 

which emphasizes cooperation rather than collaboration, allows agents to collect more rewards. This 

decentralized approach enables each agent to act independently, optimizing their actions based on individual 
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observations and thus improving overall performance in smaller environments. Moreover, we found that the 

reward collection decreases as the map size increases. This trend is due to the larger exploration area required 

on bigger maps, making it more challenging for agents to achieve their goals efficiently.  
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