• 제목/요약/키워드: activity factor

검색결과 5,143건 처리시간 0.031초

Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

  • Kim, Mi-Kyoung;Park, Hyun-Joo;Kim, Su-Ryun;Choi, Yoon Kyung;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권4호
    • /
    • pp.327-334
    • /
    • 2015
  • The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin- A-induced angiogenesis in vivo and ex vivo. Orexin-A-stimulated endothelial tube formation and chemotactic activity were also blocked in SnPP-treated vascular endothelial cells. Orexin-A treatment increased the expression of nuclear factor erythroid-derived 2 related factor 2 (Nrf2), and antioxidant response element (ARE) luciferase activity, leading to induction of HO-1. Collectively, these findings indicate that HO-1 plays a role as an important mediator of orexin-A-induced angiogenesis, and provide new possibilities for therapeutic approaches in pathophysiological conditions associated with angiogenesis.

Effects of the Antidiabetic Drugs Evogliptin and Sitagliptin on the Immune Function of CD26/DPP4 in Th1 Cells

  • Yoon, Hyunyee;Sung, Ji Hyun;Song, Moon Jung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.154-165
    • /
    • 2021
  • This study aimed to investigate whether the antidiabetic drugs dipeptidyl peptidase 4 (DPP4) inhibitors such as evogliptin and sitagliptin affect the membrane DPP4 (mDPP4) enzymatic activity and immune function of T helper1 (Th1) cells in terms of cytokine expression and cell profiles. The mDPP4 enzymatic activity, cytokine expression, and cell profiles, including cell counts, cell viability, DNA synthesis, and apoptosis, were measured in pokeweed mitogen (PWM)-activated CD4+CD26+ H9 Th1 cells with or without the DPP4 inhibitors, evogliptin and sitagliptin. PWM treatment alone strongly stimulated the expression of mDPP4 and cytokines such as interleukin (IL)-2, IL-10, tumor necrosis factor-alpha, interferon-gamma, IL-13, and granulocyte-macrophage colony stimulating factor in the CD4+CD26+ H9 Th1 cells. Evogliptin or sitagliptin treatment potently inhibited mDPP4 activity in a dose-dependent manner but did not affect either the cytokine profile or cell viability in PWM-activated CD4+CD26+ H9 Th1 cells. These results suggest that, following immune stimulation, Th1 cell signaling pathways for cytokine expression function normally after treatment with evogliptin or sitagliptin, which efficiently inhibit mDPP4 enzymatic activity in Th1 cells.

Evaluation of the effects of disulfiram, an alcohol-aversive agent with anti-cancer activity, on mouse bone marrow cells

  • Park, Seo-Ro;Joo, Hong-Gu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.157-164
    • /
    • 2022
  • Disulfiram (DSF) is an aldehyde dehydrogenase inhibitor. DSF has potent anti-cancer activity for solid and hematological malignancies. Although the effects on cancer cells have been proven, there have been few studies on DSF toxicity in bone marrow cells (BMs). DSF reduces the metabolic activity and the mitochondrial membrane potential of BMs. In subset analyses, we confirmed that DSF does not affect the proportion of BMs. In addition, DSF significantly impaired the metabolic activity and differentiation of BMs treated with granulocyte macrophage-colony stimulating factor, an essential growth and differentiation factor for BMs. To measure DSF toxicity in BMs in vivo, mice were injected with 50 mg/kg, a dose used for anti-cancer effects. DSF did not significantly induce BM toxicity in mice and may be tolerated by antioxidant defense mechanisms. This is the first study on the effects of DSF on BMs in vitro and in vivo. DSF has been widely studied as an anti-cancer drug candidate, and many anti-cancer drugs lead to myelosuppression. In this regard, this study can provide useful information to basic science and clinical researchers.

A Pumilio Activity Sensor Reveals Bag-of-Marbles Inhibition of Pum Activity in the Drosophila Ovary

  • Wijeong Jang;Changsoo Kim
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권1호
    • /
    • pp.39-46
    • /
    • 2023
  • Pumilio (Pum) is an RNA-binding protein and translational repressor important to diverse biological processes. In the Drosophila ovary, Pum is expressed in female germline stem cells (GSCs), wherein it acts as an intrinsic stem cell maintenance factor via repressing target mRNAs that are as yet mostly unknown. Pum recognizes the Pum binding sequence (PBS) in the mRNA 3'UTR through its C-terminus Puf domain. Translational repression is mediated through its N-terminal domain, but the molecular mechanism remains largely unknown. We previously showed that Bag-of-marbles, a critical differentiation-promoting factor of female GSCs, physically interacts with the N-terminus of Pum. We further showed that this interaction is critical to Bam inhibition of Pum repressive action in cultured cells, but the physiological relevance was not addressed. Here we design an in vivo GFP translational reporter bearing the PBS in its 3'UTR and show that GFP expression is reduced in cells wherein Pum is known to be active. Furthermore, we demonstrate in pum mutant ovary that this GFP repression requires Pum, and also that the sensor faithfully monitors Pum activity. Finally, we show that forced expression of Bam inhibits Pum-mediated repression, validating that Bam inhibits Pum activity in vivo.

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • 제50권11호
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

산림화재 종합위험등급화에 관한 연구 (A Study on the Wildland Fire Total Hazard Classification)

  • 김동현;김태구;김광일
    • 한국화재소방학회논문지
    • /
    • 제15권3호
    • /
    • pp.49-54
    • /
    • 2001
  • 최근 전 세계적으로 개발을 위한 고의적인 방화와 기상이변에 의한 산림화재의 급증과 피해규모가 증가하는 경향을 보이고 있다. 이와 같은 대형 산림화재는 국내에서도 같은 경향으로 나타나고 있다. 산림화재에 가장 효과적인 대응 방법은 화재발생 후의 진압보다는 화재예방 활동이라고 볼 수 있으며, 우선적으로 시급한 연구과제는 산림화재 예방 시스템에 관한 연구라 할 수 있다. 본 연구에서는 산림화재의 종합적 위험등급 개발을 위해 산림화재에 영향을 미치는 인자들에 대해 실험 및 자료들을 분석·고찰하여 6개 인자에 대한 개별적 위험성을 나타내었으며 각 인자들의 위험성 기여도에 따른 가중치를 적용하여 종합위험 등급을 설정하였다.

  • PDF

Hypoxia-induced Angiogenesis during Carcinogenesis

  • 최규실;배문경;정주원;문효은;김규원
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.120-127
    • /
    • 2003
  • The formation of new blood vessels, angiogenesis, is an essential process during development and disease. Angiogenesis is well known as a crucial step in tumor growth and progression. Angiogenesis is induced by hypoxic conditions and regulated by the hypoxia-inducible factor 1 (HIF-1). The expression of HIF-1 correlates with hypoxia-induced angiogenesis as a result of the induction of the major HIF-1 target gene, vascular endothelial cell growth factor (VEGF). In this review, a brief overview of the mechanism of angiogenesis is discussed, focusing on the regulatory processes of the HIF-1 transcription factor. HIF-1 consists of a constitutively expressed HIF-1 beta(HIF-1β) subunit and an oxygen-regulated HIF-1 alpha(HIF-1α) subunit. The stability and activity of HIF-1α are regulated by the interaction with various proteins, such as pVHL, p53, and p300/CBP as well as by post-translational modifications, hydroxylation, acetylation, and phosphorylation. It was recently reported that HIF-1α binds a co-activator of the AP-1 transciption factor, Jab-1, which inhibits the p53-dependent degradation of HIF-1 and enhances the transcriptional activity of HIF-1 and the subsequent VEGF expression under hypoxic conditions. ARD1 acetylates HIF-1α and stimulates pVHL-mediated ubiquitination of HIF-1α. With a growing knowledge of the molecular mechanisms in this field, novel strategies to prevent tumor angiogenesis can be developed, and form these, new anticancer therapies may arise.

Introduction, Development, and Characterization of Supernodulating Soybean Mutant -Shoot Factor Regulation of Nodule Development in Supernodulating Soybean Mutant-

  • Lee, Hong-Suk;Kim, Yong-Wook;Park, Eui-Ho
    • 한국작물학회지
    • /
    • 제43권1호
    • /
    • pp.28-31
    • /
    • 1998
  • Nodule development was regulated partially by host plant factors originating in the shoots and roots. This study was performed to identify the origin of the factors regulating nodulation in supernodulating soybean (Glycine max [L.] Merr.) mutant 'SS2-2' which was isolated recently from ethyl methanesulfonate (EMS) mutagenesis of 'Sinpaldalkong 2'. Self- and reciprocal-grafts were made among three soybean genotypes which consisted of two supernodulating mutants, SS2-2 and 'nts 382', and a normal nodulating Sinpaldalkong 2. Self-grafted supernodulating mutants were characterized by greater nodule number, nodule dry weight, and $C_2$H$_2$ reduction activity than self-grafted wild types. They were also characterized by relatively higher nodule to root dry weight. Significant shoot genotypic effects were observed on nodule number, nodule dry weight, and $C_2\;H_2$ reduction activity per plant, whereas varying root genotypes had no effects. From this result, it is surmised that supernodulating characters are controlled by a graft-transmissible shoot factor, and mutant SS2-2 may have similar nodulation mechanism to the former supernodulating nts 382. In all grafts, both supernodulating mutants and Sinpaldalkong 2 maintained the similar balance between above ground and below ground parts regardless of significant differences in partitioning of dry matter into root and nodule between supernodulating mutants and Sinpaldalkong 2.

  • PDF

대학병원직원의 지식경영활동과 성과에 관한 연구 (Knowledge Management Activity and Performance of University Hospital Employees)

  • 이현숙
    • 보건행정학회지
    • /
    • 제24권3호
    • /
    • pp.291-300
    • /
    • 2014
  • Background: The efficient knowledge management in hospital organization is generally known as the important activities relevant to employees' knowledge sharing behavior and work performance. This research examined factors affecting employees' knowledge sharing behavior and work performance in top 4 university hospitals. This study is based on individual factors such as incentives, reciprocity, behavioral control, and subjective norms. Also, there are organizational factors such as CEO support, learning climate, IT system, rewards system, and trust. Methods: Data was collected from employees who are working at 3 hospitals university in Seoul and 1 university hospital in Gyeonggi-Do through the self-administered questionnaires. A total of 779 questionnaires were analyzed by PASW SPSS ver. 18.0. (SPSS Inc., Chicago, IL, USA). Results: The significant variables affecting knowledge sharing behavior are behavioral control (in individual factor) and CEO, IT system, and trust (in organization factor). Also the significant variables affecting work performance are incentives, reciprocity, subjective norms, and behavioral control (in individual factor) and CEO support, IT system, reward system, and trust (in organization factor). Conclusion: The personality and organization characteristics factors is important to improve knowledge sharing behavior and work performance of hospital employees. Therefore, to make more efficient knowledge management is to build and system knowledge sharing culture, system, and leadership and to develop practical strategies.

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.