Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.150

Effects of the Antidiabetic Drugs Evogliptin and Sitagliptin on the Immune Function of CD26/DPP4 in Th1 Cells  

Yoon, Hyunyee (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Sung, Ji Hyun (Flow Cytometry Core Facility, Biomedical Research Institute, Seoul National University Hospital)
Song, Moon Jung (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Publication Information
Biomolecules & Therapeutics / v.29, no.2, 2021 , pp. 154-165 More about this Journal
Abstract
This study aimed to investigate whether the antidiabetic drugs dipeptidyl peptidase 4 (DPP4) inhibitors such as evogliptin and sitagliptin affect the membrane DPP4 (mDPP4) enzymatic activity and immune function of T helper1 (Th1) cells in terms of cytokine expression and cell profiles. The mDPP4 enzymatic activity, cytokine expression, and cell profiles, including cell counts, cell viability, DNA synthesis, and apoptosis, were measured in pokeweed mitogen (PWM)-activated CD4+CD26+ H9 Th1 cells with or without the DPP4 inhibitors, evogliptin and sitagliptin. PWM treatment alone strongly stimulated the expression of mDPP4 and cytokines such as interleukin (IL)-2, IL-10, tumor necrosis factor-alpha, interferon-gamma, IL-13, and granulocyte-macrophage colony stimulating factor in the CD4+CD26+ H9 Th1 cells. Evogliptin or sitagliptin treatment potently inhibited mDPP4 activity in a dose-dependent manner but did not affect either the cytokine profile or cell viability in PWM-activated CD4+CD26+ H9 Th1 cells. These results suggest that, following immune stimulation, Th1 cell signaling pathways for cytokine expression function normally after treatment with evogliptin or sitagliptin, which efficiently inhibit mDPP4 enzymatic activity in Th1 cells.
Keywords
DPP4; CD26; Evogliptin; Sitagliptin; Type 2 diabetes; Th1 cell-specific cytokines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Richter, R., Jochheim-Richter, A., Ciuculescu, F., Kollar, K., Seifried, E., Forssmann, U., Verzijl, D., Smit, M. J., Blanchet, X., von Hundelshausen, P., Weber, C., Forssmann, W. and Henschler, R. (2014) Identification and characterization of circulating variants of CXCL12 from human plasma: effects on chemotaxis and mobilization of hematopoietic stem and progenitor cells. Stem Cells Dev. 23, 1959-1974.   DOI
2 Rohrborn, D., Wronkowitz, N. and Eckel, J. (2015) DPP4 in diabetes. Front. Immunol. 6, 386.
3 Asakura, M., Fujii, H., Atsuda, K., Itoh, T. and Fujiwara, R. (2015) Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver. Drug Metab. Dispos. 43, 477-484.   DOI
4 Aso, Y., Fukushima, M., Sagara, M., Jojima, T., Iijima, T., Suzuki, K., Momobayashi, A., Kasai, K. and Inukai, T. (2015) Sitagliptin, a DPP-4 inhibitor, alters the subsets of circulating CD4+ T cells in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 110, 250-256.   DOI
5 Aso, Y., Ozeki, N., Terasawa, T., Naruse, R., Hara, K., Suetsugu, M., Takebayashi, K., Shibazaki, M., Haruki, K., Morita, K. and Inukai, T. (2012) Serum level of soluble CD26/dipeptidyl peptidase-4 (DPP4) predicts the response to sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes controlled inadequately by metformin and/or sulfonylurea. Transl. Res. 159, 25-31.   DOI
6 Baggio, L. L., Varin, E. M., Koehler, J. A., Cao, X., Lokhnygina, Y., Stevens, S. R., Holman, R. R. and Drucker, D. J. (2020) Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nat. Commun. 11, 3766.   DOI
7 Villhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. and Hughes, T. E. (2003) 1-[[(3-Hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J. Med. Chem. 46, 2774-2789.   DOI
8 Shao, S., Xu, Q. Q., Yu, X., Pan, R. and Chen, Y. (2020) Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther. 209, 107503.   DOI
9 Sheikh, A. (2013) Direct cardiovascular effects of glucagon like peptide-1. Diabetol. Metab. Syndr. 5, 47.   DOI
10 Ussher, J. R. and Drucker, D. J. (2012) Cardiovascular biology of the incretin system. Endocr. Rev. 33, 187-215.   DOI
11 Waumans, Y., Baerts, L., Kehoe, K., Lambeir, A. M. and De Meester, I. (2015) The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front. Immunol. 6, 387.   DOI
12 White, P. C., Chamberlain-Shea, H. and de la Morena M. T. (2010) Sitagliptin treatment of patients with type 2 diabetes does not affect CD4+ T-cell activation. J. Diabetes Complications 24, 209-213.   DOI
13 Yan, S., Marguet, D., Dobers, J., Reutter, W. and Fan, H. (2003) Deficiency of CD26 results in a change of cytokine and immunoglobulin secretion after stimulation by pokeweed mitogen. Eur. J. Immunol. 33, 1519-1527.   DOI
14 Casrouge, A., Sauer, A. V., Barreira da Silva, R., Tejera-Alhambra, M., Sanchez-Ramon, S., ICAReB, Cancrini, C., Ingersoll, M. A., Aiuti, A. and Albert, M. L. (2018) Lymphocytes are a major source of circulating soluble dipeptidyl peptidase 4. Clin. Exp. Immunol. 194, 166-179.   DOI
15 Barreira da Silva, R., Laird, M. E., Yatim, N., Fiette, L., Ingersoll, M. and Albert, M. L. (2015) Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol. 16, 850-858.   DOI
16 Barzegar, E., Fouladdel, S., Komeili, M. T., Atashpour, S., Ghahremani, M. H., Ostad, S. N. and Azizi, E. (2015) Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines. Iran. J. Basic Med. Sci. 18, 334-342.
17 Boonacker, E. P., Wierenga, E. A., Smits, H. H. and Van Noorden, C. J. (2002) CD26/DPPIV signal transduction function, but not proteolytic activity, is directly related to its expression level on human Th1 and Th2 cell lines as detected with living cell cytochemistry. J. Histochem. Cytochem. 50, 1169-1177.   DOI
18 Chae, Y. N., Kim, T. H., Kim, M. K., Shin, C. Y., Jung, I. H., Sohn, Y. S. and Son, M. H. (2015) Beneficial effects of evogliptin, a novel dipeptidyl peptidase 4 inhibitor, on adiposity with increased Ppargc1a in white adipose tissue in obese mice. PLoS ONE 10, e0144064.   DOI
19 Cho, J. M., Jang, H. W., Cheon, H., Jeong, Y. T., Kim, D. H., Lim, Y. M., Choi, S. H., Yang, E. K., Shin, C. Y., Son, M. H., Kim, S. H., Kim, H. J. and Lee, M. S. (2011) A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis. Diabetes Res. Clin. Pract. 91, 72-79.   DOI
20 Yazbeck, R., Howarth, G. S. and Abbott, C. A. (2009) Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol. Sci. 30, 600-607.   DOI
21 Zhao, Y., Yang, L., Wang, X. and Zhou, Z. (2014) The new insights from DPP-4 inhibitors: their potential immune modulatory function in autoimmune diabetes. Diabetes Metab. Res. Rev. 30, 646-653.   DOI
22 Gu, N., Park, M. K., Kim, T. E., Bahng, M. Y., Lim, K. S., Cho, S. H., Yoon, S. H., Cho, J. Y., Jang, I. J. and Yu, K. S. (2014) Multipledose pharmacokinetics and pharmacodynamics of evogliptin (DA1229), a novel dipeptidyl peptidase IV inhibitor, in healthy volunteers. Drug Des. Devel. Ther. 8, 1709-1721.   DOI
23 Dong, R. P., Tachibana, K., Hegen, M., Munakata, Y., Cho, D., Schlossman, S. F. and Morimoto, C. (1997) Determination of adenosine deaminase binding domain on CD26 and its immunoregulatory effect on T cell activation. J. Immunol. 159, 6070-6076.
24 Fan, H., Yan, S., Stehling, S., Marguet, D., Schuppaw, D. and Reutter, W. (2004) Dipeptidyl peptidase IV/CD26 in T cell activation, cytokine secretion and immunoglobulin production. In Dipeptidyl Aminopeptidases in Health and Disease (N. Back, I. R. Cohen, D. Kritchevsky, A. Lajtha and R. Paoletti, Eds.). Advances in Experimental Medicine and Biology, Vol. 524. Springer, Boston, MA. https://doi.org/10.1007/0-306-47920-6_20/.   DOI
25 Goodwin, S. R., Reeds, D. N., Roya, M., Struthers, H., Laciny, E. and Yarasheski, K. E. (2013) Dipeptidyl peptidase IV inhibition does not adversely affect immune or virological status in HIV infected men and women: a pilot safety study. J. Clin. Endocrinol. Metab. 98, 743-751.   DOI
26 Hong, S. M., Park, C. Y., Hwang, D. M., Han, K. A., Lee, C. B., Chung, C. H., Yoon, K. H., Mok, J. O., Park, K. S. and Park, S. W. (2017) Efficacy and safety of adding evogliptin versus sitagliptin for metformin-treated patients with type 2 diabetes: a 24-week randomized, controlled trial with open label extension. Diabetes Obes. Metab. 19, 654-663.   DOI
27 Kim, H. J., Kwak, W. Y., Min, J. P., Lee, J. Y., Yoon, T. H., Kim, H. D., Shin, C. Y., Kim, M. K., Choi, S. H., Kim, H. S., Yang, E. K., Cheong, Y. H., Chae, Y. N., Park, K. J., Jang, J. M., Choi, S. J., Son, M. H., Kim, S. H., Yoo, M. and Lee, B. J. (2011) Discovery of DA-1229: a potent, long acting dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett. 21, 3809-12.   DOI
28 Hu, X., Liu, S., Liu, X., Zhang, J., Liang, Y. and Li, Y. (2017) DPP-4 (CD26) inhibitor sitagliptin exerts anti-inflammatory effects on rat insulinoma (RINm) cells via suppressing NF-κB activation. Endocrine 55, 754-763.   DOI
29 Jao, C. L., Hung, C. C., Tung, Y. S., Lin, P. Y., Chen, M. C. and Hsu, K. C. (2015) The development of bioactive peptides from dietary proteins as a dipeptidyl peptidase IV inhibitor for the management of type 2 diabetes. BioMedicine 5, 14.   DOI
30 Jung, C. H., Park, C. Y., Ahn, K. J., Kim, N. H., Jang, H. C., Lee, M. K., Park, J. Y., Chung, C. H., Min, K. W., Sung, Y. A., Park, J. H., Kim, S. J., Lee, H. J. and Park, S. W. (2015) A randomized, double-blind, placebo-controlled, phase II clinical trial to investigate the efficacy and safety of oral DA-1229 in patients with type 2 diabetes mellitus who have inadequate glycaemic control with diet and exercise. Diabetes Metab. Res. Rev. 31, 295-306.   DOI
31 Kim, M. K., Chae, Y. N., Kim, H. D., Yang, E. K., Cho, E. J., Choi, S. H., Cheong, Y. H., Kim, H. S., Kim, H. J., Jo, Y. W., Son, M. H., Kim, S. H. and Shin, C. Y. (2012) DA-1229, a novel and potent DPP4 inhibitor, improves insulin resistance and delays the onset of diabetes. Life Sci. 90, 21-29.   DOI
32 Kim, T. H., Lee, J. H., Chae, Y. N., Jung, I. H. and Kim, M. K. (2018) Additive effects of evogliptin in combination with pioglitazone on fasting glucose control through direct and indirect hepatic effects in diabetic mice. Eur. J. Pharmacol. 830, 95-104.   DOI
33 Lee, H. K., Kim, M. K., Kim, H. D., Kim, H. J., Kim, J. W., Lee, J. O., Kim, C. W. and Kim, E. E. (2017) Unique binding mode of evogliptin with human dipeptidyl peptidase IV. Biochem. Biophys. Res. Commun. 494, 452-459.   DOI
34 Zhong, J., Kankanala, S. and Rajagopalan, S. (2016) Division DPP4 inhibition: insights from the bench and recent clinical studies. Curr. Opin. Lipidol. 27, 484-492.   DOI
35 Zhong, J., Maiseyeu, A., Davis, S. N. and Rajagopalan, S. (2015) DPP4 in cardiometabolic disease: Recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ. Res. 116, 1491-1504.   DOI
36 Kirino, Y., Sato, Y., Kamimoto, T., Kawazoe, K., Minakuchi, K. and Nakahori, Y. (2009) Interrelationship of dipeptidyl peptidase IV (DPP4) with the development of diabetes, dyslipidaemia and nephropathy: A streptozotocin-induced model using wild-type and DPP4-deficient rats. J. Endocrinol. 200, 53-61.   DOI
37 Klemann, C., Wagner, L., Stephan, M. and von Horsten, S. (2016) Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 185, 1-21.   DOI
38 Krupina, N. A. and Khlebnikova, N. N. (2016) Neonatal exposure to the dipeptidyl peptidase-IV inhibitors diprotin A and sitagliptin induces depression-like behavior, anxiety, and latent aggression in adolescent and adult rats. J. Behav. Brain Sci. 6, 167-183.   DOI
39 Lee, K. N., Jackson, K. W., Terzyan, S., Christiansen, V. J. and McKee, P. A. (2009) Using substrate specificity of antiplasmin-cleaving enzyme for fibroblast activation protein inhibitor design. Biochemistry 48, 5149-5158.   DOI
40 Mohanty, I. R., Kumar, S. and Suman, R. (2017) Dipeptidyl peptidase IV inhibitory activity of berberine and mangiferin: an in silico approach. Int. J. Clin. Endocrinol. Metab. 3, 18-22.   DOI
41 Mortier, A., Gouwy, M., Van Damme, J., Proost, P. and Struyf, S. (2016) CD26/dipeptidylpeptidase IV-chemokine interactions: double-edged regulation of inflammation and tumor biology. J. Leukoc. Biol. 99, 955-969.   DOI
42 Mulvihill, E. E. and Drucker, D. J. (2014) Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev. 35, 992-1019.   DOI
43 Ohnuma, K., Takahashi, N., Yamochi, T., Hosono, O., Dang, N. H. and Morimoto, C. (2008b) Role of CD26/dipeptidyl peptidase IV in human T cell activation and function. Front. Biosci. 13, 2299-2310.   DOI
44 Ohnuma, K., Dang, N. H. and Morimoto, C. (2008a) Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 29, 295-301.   DOI
45 Ohnuma, K., Hosono, O., Dang, N. H. and Morimoto, C. (2011) Dipeptidyl peptidase in autoimmune pathophysiology. Adv. Clin. Chem. 53, 51-84.   DOI
46 Ohnuma, K., Inoue, H., Uchiyama, M., Yamochi, T., Hosono, O., Dang, N. H. and Morimoto, C. (2006) T-cell activation via CD26 and caveolin-1 in rheumatoid synovium. Mod. Rheumatol. 16, 3-13.   DOI
47 Ohnuma, K., Uchiyama, M., Yamochi, T., Nishibashi, K., Hosono, O., Takahashi, N., Kina, S., Tanaka, H., Lin, X., Dang, N. H. and Morimoto, C. (2007) Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1. J. Biol. Chem. 282, 10117-10131.   DOI
48 Ou, X., O'Leary, H. A. and Broxmeyer, H. E. (2015) Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood 122, 161-169.
49 Park, J., Park, S. W., Yoon, K. H., Kim, S. R., Ahn, K. J., Lee, J. H., Mok, J. O., Chung, C. H., Han, K. A., Koh, G. P., Kang, J. G., Lee, C. B., Kim, S. H., Kwon, N. Y. and Kim, D. M. (2017) Efficacy and safety of evogliptin monotherapy in patients with type 2 diabetes and moderately elevated glycated haemoglobin levels after diet and exercise. Diabetes Obes. Metab. 19, 1681-1687.   DOI
50 Pinheiro, M. M., Stoppa. C. L., Valduga. C. J., Okuyama, C. E., Gorjao, R., Pereira, R. M. S. and Diniz, S. N. (2017) Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. Eur. J. Pharm. Sci. 100, 17-24.   DOI