• 제목/요약/키워드: active vibration suppression

검색결과 102건 처리시간 0.023초

PSOF 방법을 이용한 압전 지능 구조물의 능동 및 반능동 진동제어 (Active and Semi-Active Vibration Control of Piezoelectric Smart Structures Using a Pseudo-Sensor-Output-Feedback Method)

  • 김영식;김영태;오동영
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.70-76
    • /
    • 1999
  • This paper presents a pseudo-sensor-output-feedback(PSOF) method for the vibration suppression of the flexible piezoelectric smart structures. This method reduces the modeling errors using pseudo sensors in the output equation formulation. It also reduces computation time in practice. since the output equation does not need the state observer required in the state space equation. Experimental works are performed for the validation of theoretical predictions with the piezoelectric sensor and actuator bonded on the cantilever beam. An algorithm based on the sliding mode control theory is developed and analyzed for the robustness to the modeling errors and parameter uncertainties. This study also discusses the characteristics of the active and semi-active systems.

  • PDF

보의 진동억제를 위한 중앙화 및 비중앙화 제어의 비교 연구 (Comparison of Centralized and Decentralized Control for Vibration Suppression of a Beam)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.494-497
    • /
    • 2005
  • Direct velocity feedback (DVFB) control with a collocated distributed actuator and point sensor pair is known that it offers a good stability with high performance when the control strategy is applied at the suppression of structural vibration. Also decentralized control method introduced to offer to reduce implementaion effort and malfunction due to failure in sensors and actuators of control system has become an important position in DVFB. In this paper, the decentralized control is compared with centralized control in terms of vibrational velocity reduction in a clamped-clamped beam.

  • PDF

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

회전지능보의 능동진동제어 (Active Vibration Control of Slewing Smart Beam)

  • 남상현;곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.257-262
    • /
    • 2000
  • This research is concerned with the active vibration control of slewing smart structures subjected to rotating disturbance. When cantilever beam rotates about axes perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates after the slewing ends. In this paper, the analytical model for a single slewing flexible beam with surface bonded piezoelectric sensor and actuator is developed using the Hamilton's principle with discretization by the assumed mode method. The theoretial model is verified by the experimental open loop frequency response data. The controller is designed for residual vibration suppression after slewing. The designed cotroller is a positive position feedback (PPF) controller for controlling the first mode vibration.

  • PDF

Data fusion based improved HOSM observer for smart structure control

  • Arunshankar, J.
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.257-266
    • /
    • 2019
  • The benefit of data fusion in improving the performance of Higher Order Sliding Mode (HOSM) observer is brought out in this paper. This improvement in the performance of HOSM observer, resulted in the improvement of active vibration control of a piezo actuated structure, when controlled by a Discrete Sliding Mode Controller (DSMC). The structure is embedded with two piezo sensors for measuring the first two vibrating modes. The fused output of sensors is applied to the HOSM observer for generating state estimates, these states generated are applied to the DSMC, designed for the fourth order linear time invariant model of the structure. In the simulation study, the structure is excited at the first and second mode resonance. It is found that better vibration suppression is obtained, when the states generated by the fused output of sensors is applied as controller input, than the vibration suppression obtained by applying the states generated by using individual sensor output. The closed loop performance of DSMC obtained with HOSM observer is compared with the closed loop performance obtained with the conventional observer. Results obtained shows that better vibration suppression is obtained when the states generated by HOSM observer is applied as controller input.

제진을 위한 3 자유도 정밀 스테이지의 설계와 모델링 (Design and Modeling of a 3-DOF Precision Stage for Vibration Isolation)

  • 문준희;김화수;박희재
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.124-133
    • /
    • 2007
  • Active vibration isolation systems need the following performance specifications which are different from those of existing positioning systems: usage of seismic sensors, strict suppression of phase lead/lag in signal processing for sensors and actuators, excellent control in low frequency range and so on. In consideration of such specifications, a 3-DOF precision stage for vibration isolation is designed and modeled based on the physical characteristics. Then the major parameters such as spring constants and damping coefficients are valued by the system identification method using empirical transfer function. Finite element analysis is used as a verification and simulation tool throughout this research. This paper lays the foundation for the future research on the control of the active vibration isolation system.

압전 감지기와 작동기를 이용한 양단 고정보의 능동 진동 제어 (Active Vibration Control of Fixed-Fixed Beam Using Piezoelectric Sensor and Actuator)

  • 한상보;곽문규;최이호;윤신일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.260-265
    • /
    • 1996
  • Active control of forced vibration response of a fixed-fixed beam implementing PZT sensor/actuator was conducted. Among various control scheme, PPF control was chosen due to its amenability and natural robustness. For a single frequency excitation, the PPF control provided reasonable controllability with the appropriate damping ratio of the compensator. Without increasing actuator voltage, best controllability can be obtained by the exact tuning between the natural frequency of the structure and the cut-off frequency of the compensator. Even the multi-frequency excitation, the PPF provided good vibration suppression for corresponding mode of interest, even though residual modes should be controlled with independent compensators for each mode.

  • PDF

Active Vibration Control of a Plate Using TMS320C6713DSK

  • Choi, Hyeung-Sik;You, Sam-Sang;Her, Jae-Gwan;Seo, Hae-Yong;Tran, Ngoc-Huy
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.309-316
    • /
    • 2011
  • This paper deals with the experimental study of the vibration suppression of the smart structures. First, a new high-speed active control system is presented using the DSP320C6713 microprocessor. A peripheral system developed is composed of a data acquisition system, A/D and D/A converters, piezoelectric (PZT) actuator/sensors, and drivers using PA 95 for fast data processing. Next, the processing time of the peripheral device is tested and the corresponding test results are provided. Since fast data processing is very important in the active vibration control of the structures, achieving the fast loop times of the control system is focused. The control algorithm using PPF in addition to FIR filter is implemented. Finally, numerous experiments were carried out on the aluminum plate to validate the superior performance of the vibration control system at different control loop times.

Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator

  • Amini, Amir;Mohammadimehr, M.;Faraji, A.R.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.671-686
    • /
    • 2019
  • Active control of solar panels with honeycomb core and carbon nanotube reinforced composite (CNTRC) facesheets for smart structures using piezoelectric patch sensor and actuator to reduce the amplitude of vibration is a lack of the previous study and it is the novelty of this research. Of active control elements are piezoelectric patches which act as sensors and actuators in many systems. Their low power consumption is worth mentioning. Thus, deriving a simple and efficient model of piezoelectric patch's elastic, electrical, and elastoelectric properties would be of much significance. In the present study, first, to reduce vibrations in composite plates reinforced by carbon nanotubes, motion equations were obtained by the extended rule of mixture. Second, to simulate the equations of the system, up to 36 mode shape vectors were considered so that the stress strain behavior of the panel and extent of displacement are thoroughly evaluated. Then, to have a more acceptable analysis, the effects of external disturbances (Aerodynamic forces) and lumped mass are investigated on the stability of the system. Finally, elastoelectric effects are examined in piezoelectric patches. The results of the present research can be used for micro-vibration suppression in satellites such as solar panels, space telescopes, and interferometers and also to optimize active control panel for various applications.

The future role of smart structure systems in modern aircraft

  • Becker, J.;Luber, W.;Simpson, J.;Dittrich, K.
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.159-184
    • /
    • 2005
  • The paper intends to summarize some guidelines for future smart structure system application in military aircraft. This preview of system integration is based upon a review on approximately one and a half decades of application oriented aerospace related smart structures research. Achievements in the area of structural health monitoring, adaptive shape, adaptive load bearing devices and active vibration control have been reached, potentials have been identified, several feasibility studies have been performed and some smart technologies have been already implemented. However the realization of anticipated visions and previously initial timescales announced have been rather too optimistic. The current development shall be based on a more realistic basis including more emphasis on fundamental aircraft strength, stiffness, static and dynamic load and stability requirements of aircraft and interdisciplinary integration requirements and improvements of integrated actors, actuator systems and control systems including micro controllers.