• Title/Summary/Keyword: active spring

Search Result 252, Processing Time 0.023 seconds

The Efficiency of a Spring Mass Dampers System for the Control of Vibrations and Structure-borne Noise (진동 및 고체음 제어를 위한 스프링 매스댐퍼계의 효과)

  • ;;;;Heiland, D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.147-147
    • /
    • 1993
  • All types of dynamic excitation, periodical, pulse or transient in vertical, horizontal or all three directions can be effectively reduced by vibration isolation systems. Typical elements for vibration isolation control are spring units consisting of a group of helical compression springs. In all cases of shock, transient or random excitation energy absorbing dampers have to be added to the spring units in order to reduce system response in the frequency range near the natural frequency of the isolation system. The same isolation system of spring units and viscos-dampers has been used since 1979 for passive protection of buildings and structures has been proved to by very advantageous for vibration and structure borne noise control. Not only because of high vertical flexibility of the spring units, compared for example with typical rubber or neoprene mounts out also because of the horizontal of flexibility, which can be adapted by modifying the spring dimensions to nearly every requirement. It is just normal to use the same basic elements for passive isolation as for active isolation.

  • PDF

A Study on the Design Parameter of Semi-active Control System for the Vehicle Suspension (자동차용 현가장치의 반능동 제어 시스템의 설계파라미터에 대한 연구)

  • Park, Ho;Hahn, Chang-Su;Rhee, Meung-Ho;Roh, Byung-Ok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.97-103
    • /
    • 2002
  • In the determination of control laws of semi-active suspension system, optimal control theory is applied, which used in the design of fully active suspension system and in the performance index sense. Optimal semi-active control laws are designed, and the computer program is developed fur estimation of performance In the time and frequency domain. It is certified that in the semi-active control system, it is desirable to minimize the spring constant and damping coefficient as possible in the given constraints. The effect of performance improvement which is almost equal to fully active type is obtained.

A Study on Performance-Analysis and Control of the Active Catheter (작동형 내시경의 성능 해석 및 제어에 관한 연구)

  • Cheong, J.P.;Kim, J.H.;Lee, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.556-561
    • /
    • 2000
  • This paper deals with the control of an active bending actuator fur a catheter. The bending actuator with 40mm in length utilizes three zigzag SMA (shape memory alloy) springs which are equally located in the circumference between inner $({\phi}2.5 mm)$ and outer $({\phi}3.0mm)$ tube. It is purposed on realization of desired bending angle $(90^{\circ})$ and direction $(360^{\circ})$. It is also installed in front of the catheter and used to guide a path at extremely bent or branched blood vessel. The performance-analysis of the bending actuator are investigated fur the purpose of optimizing the control of the bending actuator. The analog joy stick is used to command a bending angle and direction for the fast and accurate response. According to the commands of the joy stick, tensile force of each SMA spring is computed and obtained by controlling the temperature of each SMA spring using PWM (pulse width modulation) of supplied electric power.

  • PDF

Fabrication of Bending Actuator Using Zigzag-type Shape Memory Alloy Springs (지그재그 형태의 형상기억합금 스프링을 이용한 굽힘 액츄에이터의 제작)

  • Lim, An-Su;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2512-2514
    • /
    • 1998
  • The bending actuator using zigzag type shape memory alloy springs has been fabricated and characterized. The small sized actuator with outer diameter of 3.0mm and inner diameter of 2.0mm could be implemented because zigzag type spring has advantages for thin wall type actuator over the coil type spring. The measured characteristics of the fabricated bending actuator show the possibility of practical application to micro active bending catheter.

  • PDF

Control strategy of the lever-type active multiple tuned mass dampers for structures

  • Li, Chunxiang;Han, Bingkang
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.301-314
    • /
    • 2007
  • The lever-type active multiple tuned mass dampers (LT-AMTMD), consisting of several lever-type active tuned mass dampers (LT-ATMD), is proposed in this paper to attenuate the vibrations of long-span bridges under the excitation directly acting on the structure, rather than through the base. With resorting to the derived analytical-expressions for the dynamic magnification factors of the LT-AMTMD structure system, the performance assessment then is conducted on the LT-AMTMD with the identical stiffness and damping coefficient but unequal mass. Numerical results indicate that the LT-AMTMD with the actuator set at the mass block can provide better effectiveness in reducing the vibrations of long-span bridges compared to the LT-AMTMD with the actuator set at other locations. An appealing feature of the LT-AMTMD with the actuator set at the mass block is that the static stretching of the spring may be freely adjusted in accordance with the practical requirements through changing the location of the support within the viable range while maintaining the same performance (including the same stroke displacement). Likewise, it is shown that the LT-AMTMD with the actuator set at the mass block can further ameliorate the performance of the lever-type multiple tuned mass dampers (LT-MTMD) and has higher effectiveness than a single lever-type active tuned mass damper (LT-ATMD). Therefore, the LT-AMTMD with the actuator set at the mass block may be a better means of suppressing the vibrations of long-span bridges with the consequence of not requiring the large static stretching of the spring and possessing a desirable robustness.

Implementation of permanent Magnetic Repulsion Type of Magnetic Levitation Table Using One Degree-of-freedom Active Control (1 자유도 능동제어에 의한 영구자석 반발형 자기부상 테이블의 구현)

  • Jo, Yeong-Geun;Choe, Gi-Bong;Tadahiko Shinshi;Akira Shimokohbe
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.125-132
    • /
    • 2002
  • This paper shows an experimental magnetic levitation table using one degree-of-freedom active control. The magnetic levitation table using repulsions of permanent magnets was theoretically presented already. Thus the objective of this paper is to prove stable levitation with only one degree-of-freedom active control experimentally. For the design of the system, at first, permanent magnets are selected. Secondly, the spring constants of the virtual spring are obtained by simulation. Thirdly, the moving magnets are arranged using a stable layout relation. Fourthly, a linear voice coil motor is designed. Finally, the magnetic levitation system is manufactured. The phenomenon of stable levitation in the manufactured table is proven by means of dynamic time and frequency responses. The differences between the theoretical natural frequencies and experimental ones are analyzed. Also, stable range in the control direction is shown experimentally.

Performance Evaluation of Active Hood Lift System of Passenger Vehicles with Different Operating Method (승용차 능동후드리프트 시스템의 전개 방식에 따른 성능 평가)

  • Lee, Tae-Hoon;Yoon, Gun-Ha;Park, Chun-Yong;Kang, Je-Won;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.242-247
    • /
    • 2016
  • This work investigates the performances of active hood lift system(AHLS) activated by two different operating methods through the experimental test. In the AHLS, the deployment time of the system and decrement of pedestrian injury are the most important factors for the pedestrian safety during the pedestrian-vehicle impact. After introducing the working principle of AHLS using spring actuator and gunpowder actuator, the deployment time of AHLS and decrement of pedestrian injury are evaluated by the experimental test. It has been identified that the gunpowder actuator can provide a faster deploying time of AHLS.

Base-isolated building with high-damping spring system subjected to near fault earthquakes

  • Tornello, Miguel Eduardo;Sarrazin, Mauricio
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.315-340
    • /
    • 2012
  • There are many types of seismic isolation devices that are being used today for structural control of earthquake response in buildings. The most commonly used are sliding bearings and elastomeric bearings, the latter with or without lead core. An alternative solution is the use of steel springs combined with viscoelastic fluid dampers, which is the case discussed in this paper. An analytical study of a three-story building supported on helical steel springs and viscoelastic fluid dampers, GERB Control System (GCS), subjected to near-fault earthquakes is presented. Several earthquakes records have been obtained by the acceleration network installed in the isolated building and in its non-isolated twin since they were finished. These experimental results are analysed and discussed. The aim is to show that the spring-based system can be an alternative for base isolation of small building located near active faults.

The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System (전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘)

  • Han, In-Sik;Lee, Yoon-Bok;Choi, Kyo-Jun;Kim, Jae-Yong;Jang, Myeong-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

Performance Enhancement of Pneumatic Vibration Isolation Tables in Low Frequency by Active Control (공압능동제어를 이용한 저주파 영역에서의 공압제진대 제진성능 개선에 대한 연구)

  • Oh, Ki-Yong;Lee, Jeung-Hoon;Kim, Kwang-Joon;Shin, Yun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.903-908
    • /
    • 2006
  • As environmental vibration requirements on precision equipment become more stringent. use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Dynamic performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by volume of chambers. In this study, an active control technique, so called time delay control which is considered to be adequate for a low frequency or nonlinear system, is applied to a single chamber pneumatic isolator. The procedure of applying the time delay control law to the pneumatic isolator is presented and its effectiveness in enhancement of transmissibility performance is shown based on simulation and experiment. Comparison between passive and active pneumatic isolators is also presented.

  • PDF