• 제목/요약/키워드: active packaging

검색결과 133건 처리시간 0.022초

액티브 포장기술 연구에 대한 현황 (Current Technology Trends on Active Packaging)

  • 김재능;이윤석
    • 한국포장학회지
    • /
    • 제12권1호
    • /
    • pp.13-20
    • /
    • 2006
  • Active packaging is one of the innovative concepts which actively change the condition of the packaged products. Active packaging technique controls the environment inside the packaging in order to extend the shelf life of the product and improve its quality or safety. Active packaging are based on major contents of scavenging concepts, releasing concepts, and other active packaging concepts such as removal or indicating systems. In recent years, experimental developments using active packaging concepts between polymeric packaging materials and the contact surfaces of food products are widely studied in order to make extensive commercial applications. Well-developed packaging markets in USA, Japan, and Europe are already being successfully applied in active packaging concepts. This paper reviews the concepts of active packaging and current information of active packaging technologies. The status of domestic technologies in active packaging were analyzed.

  • PDF

식품의 선도 유지를 위한 액티브 포장 연구 고찰 기능성 방출 조절 포장 중심 (Overview of active packaging to maintain the quality of fresh food products - focusing on controlled release packaging)

  • 이명호;이윤석
    • 식품과학과 산업
    • /
    • 제50권2호
    • /
    • pp.27-36
    • /
    • 2017
  • Today, the food packaging industry has a great interest in using active packaging to fresh food product as a solution for the future to positively provide its quality, safety and shelf life. Many researches have extensively studied functional packaging strategies in recently years. Controlled release packaging (CRP) is an innovative packaging technology in the packaging polymer matrix from which can active agents are delivered in a controlled way into the product. CRP technology is well-suited for controlling release of antimicrobial compounds and antioxidants to prevent food degradation reactions such as microbial growth and lipid oxidation. Advances in CRP technology allow food packaging manufacturers to challenge the development of better functional food packaging systems. This overview examines the most recent developments and technologies of active packaging for applying the food industry. The scope of this article has mainly been focused on controlled releasing systems.

Preliminary Studies on the Quality Changes of Eggplant as Influenced by Active Packaging

  • Zuo, Li;Seog, Eun-Ju;Lee, Jun-Ho;Rhim, Jong-Whan
    • 펄프종이기술
    • /
    • 제38권5호
    • /
    • pp.66-73
    • /
    • 2006
  • The effects of active packaging on the surface stiffness, mass, volume, density and weight changes of fresh as well as stored eggplant were studied at 11 and $25^{\circ}C$ for 10 days with active packaging material Type 1 and 2 and control. Mass, volume, and surface stiffness of eggplant decreased linearly throughout the storage period regardless of storage conditions; while the mass density showed a reverse trend in the ease of $11^{\circ}C$ storage. Reduction rate of mass, mass density and weight was observed minimum at $25^{\circ}C$ storage temperature with active packaging Type 1. The weight of eggplant decreased at a higher rate in the initial 4 days compared to that in the later period of storage regardless of storage temperature and type of packaging.

식품용 가스 및 수분 제거 활성포장 사용 및 법정 규정에 대한 현황 (Current Status of Legal Regulations Regarding Gas- and Moisture-removing Active Packaging for Food: A Review)

  • 김도완;오제민;이순호;김현아;황정분;고성혁
    • 한국포장학회지
    • /
    • 제28권1호
    • /
    • pp.31-38
    • /
    • 2022
  • 안전한 식품, 긴 보관 수명과 좋은 품질을 보유한 식품에 대한 소비자의 요구가 증가하고 있으며, 이에 대응하여 활성포장의 상용화와 개발이 증가하고 있다. 본 총설에서는 산소제거제, 수분제거제, 이산화탄소제거제 및 에틸렌제거제의 정의, 사용되고 있는 활성포장의 구조, 활성물질과 구동 메커니즘, 적용 식품 분야와 잠재적 효과 및 활성포장 관리 규정 등에 대하여 조사하였다. 국내 상용화 현황을 보면 활성물질을 다공성 또는 타공 구조를 가진 파우치에 넣은 다음, 식품포장에 적용하는 사쉐형 활성포장이 주로 적용되고 있음을 확인하였다. 이러한 다양한 종류의 활성포장이 식품포장에 널리 사용되고 있음에도 불구하고, 유럽에 비해 국내에서는 소비자의 건강과 식품의 안전에 영향을 줄 수 있는 활성포장과 활성물질에 대한 정의, 관리, 안전성 평가 및 사용 등에 대한 구체적인 관리 규정과 안전성 평가방법에 대한 구축은 미비함을 확인하였다. 식품은 건조식품, 액상식품, 고 수분함유 식품 등 종류가 다양하고 각 식품의 품질에 영향을 미치는 화학적, 물리적, 생물학적 요인 및 보관조건 등도 다양하다. 활성포장에 사용되는 활성물질이 식품으로 전이되면, 식품 성분과 화학적/물리적으로 상호작용하여 품질과 안전에 부정적인 영향을 야기할 가능성이 있다. 따라서, 활성포장의 최적 성능을 구현하기 위해서는 식품 맞춤형으로 설계하는 것이 필요하며 활성포장과 활성물질에 대한 관리 규정 및 안전성 평가방법도 식품 종류와 활성포장의 종류에 따라 세분화하여 정립하는 것 또한 필요하다고 사료된다.

Kimchi Packaging Technology: An Overview

  • Jeong, Suyeon;Yoo, SeungRan
    • 한국포장학회지
    • /
    • 제22권3호
    • /
    • pp.41-47
    • /
    • 2016
  • This paper provides an overview of kimchi packaging technology, focusing on packaging materials, package design, and active/intelligent packaging technology for kimchi. From a packaging-material standpoint, although various materials have been used to ensure customer satisfaction and convenience, plastic is the most widely used material, in the form of bags, trays, pouches, and rigid containers. Additionally, recent efforts in the kimchi packaging industry have allowed companies to differentiate their products by using different packaging materials and technologies, while simultaneously improving product safety and quality. On the other hand, the biggest problem in kimchi packaging is excess $CO_2$ production, leading to package expansion and leakage. To alleviate this problem, the use of $CO_2$ absorbers, high $CO_2$-permeable films, and degassing valves, in addition to the use of different packaging systems, has been investigated. Active and/or intelligent packaging systems have been developed, to include active functions beyond simply inert, passive containment and protection of the kimchi product. However, most such approaches are not yet adequately effective to be useful on a commercial scale. Therefore, further studies are needed to resolve the limitations of each technology.

Application of Nanotechnology in Food Packaging

  • Rhim, Jong-Whan
    • 한국포장학회지
    • /
    • 제13권1호
    • /
    • pp.9-18
    • /
    • 2007
  • Nanocomposite has been considered as an emerging technology in developing a novel food packaging materials. Polymer nanocomposites exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased barrier properties pertaining to gases such as oxygen, carbon dioxide, and water vapor, as well as to UV rays, and increased mechanical properties such as strength, stiffness, dimensional stability, and heat resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. New packaging materials created with this technology demonstrate an increased shelf life with maintaining high quality of the product. Nanotechnology offers big benefits for packaging. Nanocomposite technology paves the way for packaging innovation in the flexible and rigid packaging applications, offering enhanced properties such as greater barrier protection, increased shelf life and lighter-weight materials.

  • PDF

Potential Use of Biopolymer-based Nanocomposite Films in Food Packaging Applications

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.691-709
    • /
    • 2007
  • Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. However, inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance are causing a major limitation for their industrial use. By the way, recent advent of nanocomposite technology rekindled interests on the use of natural biopolymers in the food packaging application. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased mechanical strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have huge potential for application in the active food packaging industry. In this review, recent advances in the preparation and characterization of natural biopolymer-based nanocomposite films, and their potential use in food packaging applications are addressed.

최신 패키징 기술개발 동향 (Perspective of New Packaging Technologies in the Future Society)

  • 김재능
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2007년도 추계학술발표논문집
    • /
    • pp.13-19
    • /
    • 2007
  • 본 연구에서는 새로운 패키징 기술 개발 방향을 정하기 위해서 먼저 미래사회로 가는 메가트렌들가 무엇이며 이들이 어떤 새로운 패키징기술을 요구할 것인가를 분석 예측하였다. 미래사회로 가는 주요 메가트렌드는 인구통계학적 트랜드, 사회학적 트렌드, 소비자들 트렌드, 패키징 주변과학기술의 발전 트렌드 및 정부의 정책 및 법규의 트렌드를 분석하였고 이들 트렌드가 요구하는 미래의 새로운 포장기술로는 Active/Passive 패키징기술, Intelligent Communication 패키징기술, Nanotechnology 패키징 기술, Universal Convenience 패키징 기술, Environmental Friendly 패키징기술과 Package Design기술로 예측되었다.

  • PDF