DOI QR코드

DOI QR Code

Current Status of Legal Regulations Regarding Gas- and Moisture-removing Active Packaging for Food: A Review

식품용 가스 및 수분 제거 활성포장 사용 및 법정 규정에 대한 현황

  • Kim, Dowan (Department of Food Processing & Distribution, College of Life Science, Gangneung-Wonju National University) ;
  • Oh, Jae-Min (Department of Energy and Materials Engineering, Dongguk University-Seoul) ;
  • Lee, Soonho (Food Additives and Packaging Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation) ;
  • Kim, Hyun-Ah (Food Additives and Packaging Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation) ;
  • Hwang, Joungboon (Food Additives and Packaging Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation) ;
  • Ko, Seonghyuk (Department of Packaging and Logistics, Yonsei University)
  • 김도완 (강릉원주대학교 생명과학대학 식품가공유통학과) ;
  • 오제민 (동국대학교 융합에너지신소재공학과) ;
  • 이순호 (식품의약품안전평가원 식품위해평가부 첨가물포장과) ;
  • 김현아 (식품의약품안전평가원 식품위해평가부 첨가물포장과) ;
  • 황정분 (식품의약품안전평가원 식품위해평가부 첨가물포장과) ;
  • 고성혁 (연세대학교 패키징및물류학과)
  • Received : 2022.03.16
  • Accepted : 2022.04.11
  • Published : 2022.04.30

Abstract

Due to the increasing consumer demands for the safety, shelf life, and quality of food, the application and development of active packaging in the food and packaging industry have been improved. According to the standards and specifications of the Republic of Korea for utensils, containers, and packages, the function of active packaging is to remove or alleviate factors that degrade food quality. Although extensive reviews regarding the development and commercialization of active packaging have been conducted, the legal regulations and safety assessments concerning active packaging have rarely been examined. This review provides information regarding the definition, structure, components, operational mechanisms, and applications for active packaging that actively removes oxygen, moisture, carbon dioxide, and ethylene. Furthermore, the legal regulations and research results related to the development of test methods for safety assessments of active packaging are investigated.

안전한 식품, 긴 보관 수명과 좋은 품질을 보유한 식품에 대한 소비자의 요구가 증가하고 있으며, 이에 대응하여 활성포장의 상용화와 개발이 증가하고 있다. 본 총설에서는 산소제거제, 수분제거제, 이산화탄소제거제 및 에틸렌제거제의 정의, 사용되고 있는 활성포장의 구조, 활성물질과 구동 메커니즘, 적용 식품 분야와 잠재적 효과 및 활성포장 관리 규정 등에 대하여 조사하였다. 국내 상용화 현황을 보면 활성물질을 다공성 또는 타공 구조를 가진 파우치에 넣은 다음, 식품포장에 적용하는 사쉐형 활성포장이 주로 적용되고 있음을 확인하였다. 이러한 다양한 종류의 활성포장이 식품포장에 널리 사용되고 있음에도 불구하고, 유럽에 비해 국내에서는 소비자의 건강과 식품의 안전에 영향을 줄 수 있는 활성포장과 활성물질에 대한 정의, 관리, 안전성 평가 및 사용 등에 대한 구체적인 관리 규정과 안전성 평가방법에 대한 구축은 미비함을 확인하였다. 식품은 건조식품, 액상식품, 고 수분함유 식품 등 종류가 다양하고 각 식품의 품질에 영향을 미치는 화학적, 물리적, 생물학적 요인 및 보관조건 등도 다양하다. 활성포장에 사용되는 활성물질이 식품으로 전이되면, 식품 성분과 화학적/물리적으로 상호작용하여 품질과 안전에 부정적인 영향을 야기할 가능성이 있다. 따라서, 활성포장의 최적 성능을 구현하기 위해서는 식품 맞춤형으로 설계하는 것이 필요하며 활성포장과 활성물질에 대한 관리 규정 및 안전성 평가방법도 식품 종류와 활성포장의 종류에 따라 세분화하여 정립하는 것 또한 필요하다고 사료된다.

Keywords

Acknowledgement

본 연구는 2021년도 식품의약품안전처의 연구개발비 (21162식품위014)로 수행되었으며 이에 감사드립니다.

References

  1. Wyrwa, J. and Barska, A. 2017. Innovation in the food packaging market: active packaging. Eur. Food Res. Technol. 243: 1681-1692. https://doi.org/10.1007/s00217-017-2878-2
  2. Yildirim, S., Rocker, B., Pettersen, M.K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., and Coma, V. 2018. Active packaging applications for food. Compr. Rev. Food Sci. Food Saf. 17: 165-199. https://doi.org/10.1111/1541-4337.12322
  3. Otoni, C.G., Espitia, P.J.P., Avena-Bustrillos, R.J. and McHugh, T.H. 2016. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads, Food Res. Int. 83: 60-73. https://doi.org/10.1016/j.foodres.2016.02.018
  4. Commission Regulation (EC). 2004. No 1935/2004 of the European Paliament and of the Council on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC.
  5. Commission Regulation (EC). 2009. No 450/2009 of the European Paliament and of the Council on active and materials and articles intended to come into contact with food.
  6. Bradley, E., Driffield, M., Leon, I., Ticha, J., Stee, V.S., Beuken, E.Z-v.D. and Koster, S. 2009. Identification of chemicals specific to active and intelligent packaging on the European Market and the extent to which they migrate into food. Food Standards Agency. TNO Report. United Kingdom.
  7. Dainelli, D., Gontard, N., Spyropoulos, D., Beuken, E.Z-v.D. and Tobback, P. 2008. Active and Intelligent Food Packaging: legal aspects and safety concerns. Trends Food Sci. Technol. 19: S103-S112. https://doi.org/10.1016/j.tifs.2008.09.011
  8. Cruz, R.S., Camilloto, G.P. and Pires, A.C.D.S. 2012. Oxygen Scavengers: An Approach on Food Preservation, Structure and Function of Food Engineering, Ayman Amer Eissa, IntechOpen.
  9. http://www.lipmen.co.kr/kor/index.asp
  10. http://www.tpg.co.kr/kr/index.php
  11. Lee, J-S., Chang, Y., Lee, E-S., Song, H-G., Chang, P-S. and Han, J. 2018. Ascorbic acid-based oxygen scavenger in active food packaging system for raw meatloaf. J. Food Sci. 83: 682-688. https://doi.org/10.1111/1750-3841.14061
  12. http://ageless.mgc-a.com/
  13. Dey, A. and Neogi, S. 2019. Oxygen scavengers for food packaging applications: A review. Trends Food Sci. Technol. 90: 26-34. https://doi.org/10.1016/j.tifs.2019.05.013
  14. Lee, D-S., Wang, H.J., Jaisan, C. and An, D.S. 2022. Active food packaging to control carbon dioxide. Packa. Technol. Sci. 35: 213-227. https://doi.org/10.1002/pts.2627
  15. Lee, H-G., Jeong, S. and Yoo, S. 2019. Development of food packaging materials containing calcium hydroxide and porous medium with carbon dioxide-adsorptive function. Food Packag. Shelf Life. 21: 100352. https://doi.org/10.1016/j.fpsl.2019.100352
  16. Lee, H-G., Cho, C. H. Kim, H. K. and Yoo, S. 2020. Improved physical and mechanical properties of food packaging films containing calcium hydroxide as a CO2 adsorbent by stearic acid addition. Food Packag. Shelf Life. 26: 100558. https://doi.org/10.1016/j.fpsl.2020.100558
  17. Wang, H.J., Jo, Y.H., An, D.S., Rhim, J-W. and Lee, D.S. 2015. Properties of agar-based CO2 absorption film containing Na2CO3 as active compound. Food Packag. Shelf Life. 4: 36-42. https://doi.org/10.1016/j.fpsl.2015.03.004
  18. Jaisan, C., An, D.S. and Lee, D.S. 2018. Application of physical gas absorbers in manipulating the CO2 pressure of Kimchi package. J. Food Sci. 83: 3002-3008. https://doi.org/10.1111/1750-3841.14383
  19. Karkhanis, S.S., Stark. N.M., Sabo, R.C. and Matuana, L.M. 2021. Potential of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films for improving the shelf-life of a dry food product. Food Packag. Shelf Life. 29: 100689. https://doi.org/10.1016/j.fpsl.2021.100689
  20. Bovi, G.G., Caleb, O.J. Klaus, E., Tintchev, F., Rauh, C. and Mahajan, P.V. 2018. Moisture absorption kinetics of fruit pad for packaging of fresh strawberry. J. Food Eng. 223: 248-254. https://doi.org/10.1016/j.jfoodeng.2017.10.012
  21. European Commission. 2011. EU Guidance to the Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food.
  22. Gaikwad, K.K., Singh, S. and Negi, Y.S. 2020. Ethylene scavengers for active packaging of fresh food produce. Environ.Chem.Lett. 18: 269-284. https://doi.org/10.1007/s10311-019-00938-1
  23. Gaikwad, K.K. and Y.S. Lee. 2017. Current Scenario of gas scavenging system used in active packaging -a review. J. Korean Soc. Packaging. Sci. Technol. 23: 109-117. https://doi.org/10.20909/kopast.2017.23.2.109
  24. Han, J-W., Ruiz-Garcia, L., Qian, J-P. and Yang, X-T. 2018. Food packaging : a comprehensive review and future trends. Compr. Rev. Food Sci. Food Saf. 17: 860-877. https://doi.org/10.1111/1541-4337.12343
  25. Upadhyay, A., Kumar, P., Kardam. S. and Gaikwad, K.K. 2022. Ethylene scavenging film based on corn starch-gum acacia impregnated with sepiolite clay and its effect on quality of fresh broccoli florets. Food Biosci. 46: 101556. https://doi.org/10.1016/j.fbio.2022.101556
  26. Srithammaraj, K., Magaraphan, R. and Manuspiya, H. 2012. Modified porous clay heterostructures by organic-inorganic hybrids for nanocomposite ethylene scavenging/sensor packaging film. Packa. Technol. Sci. 25: 63-72. https://doi.org/10.1002/pts.958
  27. Bruijn, J.D., Gomez, A., Loyola, C., Melin, P., Solar, V., Abreu, N., Azzolina-Jury, F. and Valdes, H. 2020. Use of a copper- and zinc-modified natural zeolite to improve ethylene removal and postharvest quality of tomato fruit. Crystals. 10: 471. https://doi.org/10.3390/cryst10060471
  28. Wei, H., Seidi, F., Zhang, T., Jin, Y. and Xiao, H. 2021. Ethylene scavengers for the preservation of fruits and vegetables: a review. Food Chem. 337: 127750. https://doi.org/10.1016/j.foodchem.2020.127750
  29. Kim, S., Jeong, G.H. and Kim, S-W. 2019. Ethylene gas decomposition using ZSM-5/WO3-Pt-nanorod composites for fruit freshness. ACS Sustainable Chem. Eng. 7: 11250-11257. https://doi.org/10.1021/acssuschemeng.9b00584
  30. Ministry of food and drug safety. 2022. Food Code. Chapter 2. Common standards and specifications for general food.
  31. Ministry of food and drug safety, 2021. Standards and specifications for utensils, containers and packages. II. Common stadards and specifications. 1. Common manufacturing standards. b. manufacturing and processing criteria. 3) Standards for intelligent and active packaging.
  32. European Commission. Council Directive 89/107/EEC of 21 December 1988 on the approximation of the laws of the Member States concerning food additives authorized for use in foodstuffs intended for human consumption.