• Title/Summary/Keyword: active matrix

Search Result 728, Processing Time 0.028 seconds

A New Organic Thin-Film Transistor based Current-driving Pixel Circuit for Active-Matrix Organic Light-Emitting Displays (유기박막트랜지스터(OFTF)를 이용한 AMOLED 픽셀 보상회로 연구)

  • Shin, A-Ram;Bae, Young-Seok;Hwang, Sang-Jun;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.22-23
    • /
    • 2006
  • A new current-driving pixel circuit for active-matrix organic light-emitting diodes (AMOLEDs), composed of four organic thin-film transistors (OTFTs) and one capacitor, is proposed using a current scaling method. Designing pixel circuits with OTFTs has many problems due to the instability of the OTFT parameters with still unknown characteristics of the material. Despite the problems in using OTFTs to drive the pixel circuit, our work could be set as a goal for future OTFT development. The simulation results show enhanced linearity between input data and OLEO luminescence at low current levels as well as successfully compensating the variation of the OTFTs, such as the threshold voltage and mobility.

  • PDF

A New AMOLED Pixel Structure Compensating Threshold Voltage of TFT for Large-Sized and High Resolution Display (대면적 고해상도를 위한 AMOLED(Active Matrix Organic Light Emitting Diode)의 문턱전압 보상회로)

  • Ryu, Jang-Woo;Jung, Min-Chul;Hwang, Sang-Joon;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.529-530
    • /
    • 2005
  • A voltage driving AMOLED(Active Matrix Organic Light Emitting Diode) is useful for large-sized, high resolution OLED display. The conventional 2-TFTs, 1-CAP AMOLED circuit suffer from the threshold voltage variation of TFT. In this paper, a new AMOLED structure is proposed. It is composed of 5-TFTs and 2-capacitors. It is described that the operating principle and the characteristics of the proposed structure and is verified the performance by HSPICE simulation. The result of simulation shows that the effect of the threshold voltage variation in this circuit, is able to neglect.

  • PDF

Microstructure and Processing of Bioactive Ceramic Composites as Dental Implants (치과 임플란트용 bioactive 세라믹 복합재료의 제조와 미세조직)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • The purpose of this study was to process bio-active glass ceramic composite, reinforced with sapphire fibers, by hot press. Also to study the interface of the matrix and the sapphire fiber, and the mechanical properties. Glass raw materials melted in Pt crucible at 1300$^{\circ}C$ during 3.5 hours. The melt was crushed in ball mill and then crushed material, ground and sieved to $<40{\beta}{\mu}m$. Sapphire fibers cut (30mm) and aligned. Powder and fibers hot pressed. The micrographs show good bonding between the matrix and the fiber and no porosity in the glass matrix. This means ideal fracture phenomena. Glass is fractured before the fiber. This is indication of good fracture strength. EDXS showing aluminum rich phase and crystalline phase. Bright field image of the matrix showing crystalline phase. Also diffraction pattern of TEM showing the crystalline phase and more than one phase. Strength of the samples was determined by 3 point bend testing. Strength of the 10vol% sample was approximately 69MPa, while strength of the control sample is 35MPa. Conclusions through this study as follow: 1. Micrographs show no porosity in the glass matrix and the interface. 2. The interface between the fiber and the glass matrix show no gaps. 3. Fracture of the glass indicates characteristic fiber-matrix separation. 4. Presence of crystalline phase at high processing temperature. 5. Sapphire is compatible with bioactive glass.

  • PDF

Matrix completion based adaptive sampling for measuring network delay with online support

  • Meng, Wei;Li, Laichun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3057-3075
    • /
    • 2020
  • End-to-end network delay plays an vital role in distributed services. This delay is used to measure QoS (Quality-of-Service). It would be beneficial to know all node-pair delay information, but unfortunately it is not feasible in practice because the use of active probing will cause a quadratic growth in overhead. Alternatively, using the measured network delay to estimate the unknown network delay is an economical method. In this paper, we adopt the state-of-the-art matrix completion technology to better estimate the network delay from limited measurements. Although the number of measurements required for an exact matrix completion is theoretically bounded, it is practically less helpful. Therefore, we propose an online adaptive sampling algorithm to measure network delay in which statistical leverage scores are used to select potential matrix elements. The basic principle behind is to sample the elements with larger leverage scores to keep the traits of important rows or columns in the matrix. The amount of samples is adaptively decided by a proposed stopping condition. Simulation results based on real delay matrix show that compared with the traditional sampling algorithm, our proposed sampling algorithm can provide better performance (smaller estimation error and less convergence pressure) at a lower cost (fewer samples and shorter processing time).

Nonlinear Controller Design of Active Magnetic Bearing Systems Based on Polytopic Quasi-LPV Models (Polytopic Quasi-LPV 모델 기반 능동자기베어링의 비선형제어기 설계)

  • Lee, Dong-Hwan;Park, Jin-Bae;Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.797-802
    • /
    • 2010
  • In this paper, a systematic procedure to design a nonlinear controller for nonlinear active magnetic bearing (AMB) systems is presented. To do this, we effectively convert the AMB system into a polytopic quasi-linear parameter varying (LPV) system, which is a representation of nonlinear state-space models and is described by the convex combination of a set of precisely known vertices. Unlike the existing quasi-LPV systems, the nonlinear weighting functions, which construct the polytopic quasi-LPV model of the AMB system by connecting the vertices, include not only state variables but also the input ones. This allows us to treat the input nonlinearity effectively. By means of the derived polytopic quasi-LPV model and linear matrix inequality (LMI) conditions, nonlinear controller that stabilizes the AMB system is obtained. The effectiveness of the proposed controller design methodology is finally demonstrated through numerical simulations.

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

LASER Crystallization System for Poly-Si

  • Lee, Ho-Nyeon
    • Information Display
    • /
    • v.7 no.2
    • /
    • pp.10-13
    • /
    • 2006
  • Active Matrix Flat Panel Display(AM-FPD)의 경쟁력 향상을 위해서 반드시 필요한 고성능, 고생산성 Thin Film Transistor(TFT)를 제작에 사용하는 결정화 방법 중, 산업화에 가장 근접한 레이저 결정화 방법 및 장비에 대해서 기술한다.

Overview of active packaging to maintain the quality of fresh food products - focusing on controlled release packaging (식품의 선도 유지를 위한 액티브 포장 연구 고찰 기능성 방출 조절 포장 중심)

  • Lee, Myung-Ho;Lee, Youn Suk
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.27-36
    • /
    • 2017
  • Today, the food packaging industry has a great interest in using active packaging to fresh food product as a solution for the future to positively provide its quality, safety and shelf life. Many researches have extensively studied functional packaging strategies in recently years. Controlled release packaging (CRP) is an innovative packaging technology in the packaging polymer matrix from which can active agents are delivered in a controlled way into the product. CRP technology is well-suited for controlling release of antimicrobial compounds and antioxidants to prevent food degradation reactions such as microbial growth and lipid oxidation. Advances in CRP technology allow food packaging manufacturers to challenge the development of better functional food packaging systems. This overview examines the most recent developments and technologies of active packaging for applying the food industry. The scope of this article has mainly been focused on controlled releasing systems.

Reanalysis for Correlating and Updating Dynamic Systems Using Frequency Response Functions (FRF를 이용한 동적 구조 시스템의 구조추정 및 재해석)

  • 한경봉;박선규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.49-56
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrected noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. One simulated system is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise Is also addressed.

  • PDF

Decoupled Control of Doubly Fed Induction Machine Fed by SVM Matrix Converter

  • Dendouga, Abdelhakim;Abdessemed, Rachid;Bendaas, Mohamed Lokmane
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.491-498
    • /
    • 2008
  • In this paper a decoupled control of a doubly-fed induction machine(DFIM) feed by a matrix converter is presented. It provides a robust regulation of the stator side active and reactive powers by the direct and quadratic components of the stator current vector, presented in a line-voltage-oriented reference frame. In this case, the stator windings are directly connected to the line grid, while the rotor windings are supplied by this later through a matrix converter controlled by a space vector modulation technique. The proposed solution is suitable for both energy generation and electrical drive applications with restricted speed variation range.