• Title/Summary/Keyword: active grid

Search Result 451, Processing Time 0.024 seconds

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

Design and Implementation of a Low Cost Grid-Connected 5 kVA Photovoltaic System with Load Compensation Capability

  • Mejdar, Reza Seifi;Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2306-2314
    • /
    • 2016
  • Design and implementation of a low cost grid-connected 5kVA solar photovoltaic (PV) system is proposed in this paper. Since the inverter is a major component of the PV system, the B4 inverter used in this paper reduces the total cost of the PV system. In order to eliminate the massive transformer, the PV system is connected to the grid through IGBT switches. In addition to injection of active power into the grid, the B4 inverter can compensate reactive power and reduce harmonics of the nonlinear loads. A TMS320F28335 DSP processor is used for effective control of the B4 inverter. Various features of this processor enable the implementation of the necessary control algorithms. As a first step, the PV system is simulated and evaluated in Matlab/Simulink. In the second step, hardware circuits are designed and implemented based on the simulation results. The operation of the PV system has been evaluated under balanced, unbalanced, linear and nonlinear loads which proves its accuracy and efficiency.

Control Strategy Compensating for Unbalanced Grid Voltage Through Negative Sequence Current Injection in PMSG Wind Turbines

  • Kang, Jayoon;Park, Yonggyun;Suh, Yongsug;Jung, Byoungchang;Oh, Juhwan;Kim, Jeongjoong;Choi, Youngjoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.244-245
    • /
    • 2013
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

Analysis for Voltage Fluctuation and Power Flow at the Grid-Connected Time of Squirrel-Cage Induction Generator (농형 유도발전기의 계통 연계시 전압 변동 및 전력 흐름 분석)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.45-51
    • /
    • 2014
  • Synchronous generators and induction generators are mainly used in hydroelectric power generation. Synchronous generator is mainly applied to large hydroelectric plants but induction generator is applied to the small hydro power plants. Stability of induction generator is slightly less than the synchronous generator. However, induction generator has many advantages rather than a synchronous generator in terms of price and maintenance. So Induction generator is used primarily in small hydroelectric power station less than 1,000kW recently. Squirrel cage induction generator generates a high inrush current at the grid-connection. This high inrush current causes a voltage drop on the grid. In order to reduce the voltage drop and to analyze the power flow, the analysis for operating characteristics of the induction generator should be reviewed in advance. In this study, we analyzed the voltage drop and power flow analysis when a 1500kW induction generator is connected to the grid. The voltage drop is slightly higher than the acceptable range of distributed power supply voltage and the power flow of the generator is performed well.

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application

  • Feng, Bo;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1006-1017
    • /
    • 2015
  • This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.

Design of A 10MHz Bandpass Filter Using Grounding and Floating CDTA Active Inductors (그라운딩과 폴로팅 CDTA 능동인덕터를 사용한 10MHz 대역통과필터 설계)

  • Bang, Junho;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6804-6809
    • /
    • 2014
  • This paper presents a bandpass filter using a current differencing transconductance amplifier (CDTA)s for application to low-voltage and low-power analog signal processing systems. The presented filter employs grounding and floating active inductors, which are composed of two or three CDTAs, and is capable of realizing all the standard functions of the filter without requiring any component matching criteria or extra active components. The HSPICE simulation result of the designed active bandpass filter showed that it had a 10MHz center frequency with -2.5dB attenuated bandwidth from 9.5 MHz to 10.5 MHz, and -50dB from 8 MHz to 17 MHz.

Improved Direct Power Control of Shunt Active Power Filter with Minimum Reactive Power Variation and Minimum Apparent Power Variation Approaches

  • Trivedi, Tapankumar;Jadeja, Rajendrasinh;Bhatt, Praghnesh
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1124-1136
    • /
    • 2017
  • Direct Power Control technique has become popular in the grid connected Voltage Source Converter (VSC) applications due to its simplicity, direct voltage vector selection and improved dynamic performance. In this paper, a direct method to determine the effect of voltage vector on the instantaneous active and reactive power variations is developed. An alternative Look Up Table is proposed which minimizes the commutations in the converter and results in minimum reactive power variation. The application of suggested table is established for Shunt Active Power Filter (SAPF) application. The Predictive Direct Power Control method, which minimizes apparent power variation, is further investigated to reduce commutations in converters. Both the methods are validated using 2 kVA laboratory prototype of Shunt Active Power Filters (SAPF).

Compensation of Unbalanced PCC Voltage in an Off-shore Wind Farm of PMSG Type Turbines (해상풍력단지에서의 PMSG 풍력발전기를 활용한 계통연계점 불평형 전원 보상)

  • Kang, Ja-Yoon;Han, Dae-Su;Suh, Yong-Sug;Jung, Byoung-Chang;Kim, Jeong-Joong;Park, Jong-Hyung;Choi, Young-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This paper proposes a control algorithm for permanent magnet synchronous generators with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage off-shore wind power system under unbalanced grid conditions. Specifically, the proposed control algorithm compensates for unbalanced grid voltage at the PCC (Point of Common Coupling) in a collector bus of an off-shore wind power system. This control algorithm has been formulated based on symmetrical components in positive and negative synchronous rotating reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power is described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of AC input current is injected into the PCC in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm enables the provision of balanced voltage at the PCC resulting in the high quality generated power from off-shore wind power systems under unbalanced network conditions.

FLOW SIMULATION AROUND DUCTED-PROP (덕티드-프롭 유동해석)

  • Choi, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.264-271
    • /
    • 2007
  • The flow simulations around ducted-prop of tilt-duct aircraft were conducted in this study. For the investigation of aerodynamic characteristics of various configurations of duct, the axisymmetric flow calculation method combined with actuator disk model for prop were used. The rapid two-dimensional calculation and fast grid generation enable aerodynamic analysis for various duct configurations in a very short time and anticipated to active role in optimal configuration design of duct exposed to various flight modes. For the case of angle of attack or tilt angle, the three dimensional flow calculation is conducted using the three dimensional grid simply generated by just revolving the axisymmetric grid around center axis. Through the three dimensional calculation around duct, the aerodynamic effectiveness of duct as a lifting surface in airplane mode was investigated. The flow calculations around the control vane (wing) installed in the rear section of duct were conducted The aerodynamic data of wing were compared with the data of the ducts to evaluate the aerodynamic effectiveness of ducts.

  • PDF