• Title/Summary/Keyword: active carbon

Search Result 889, Processing Time 0.028 seconds

Characteristic recovery of active carbon waste treated by microwave (Microwave에 의한 정수장 폐활성탄의 복원 특성)

  • Lee, Bum-Suk;Kim, Taik-Nam;Kim, Jong-Ock
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.93-107
    • /
    • 2002
  • The active carbon waste which was used in water purification plant was investigated for the improvement of capillary after microwave treatment. The variation of surface area was measured with the various kinds and amounts of active carbon. The water vapor as the activator was verified to improve the capillary but it reacted with the water contained in waste active carbon. In contrast to the water vapor, the $CO_2$ gas improved the surface area about 10-20 % compared to as received one. The best results was observed at the intensity of 2.75 kw microwave. The more effective recovery of active carbon waste was observed at the microwave treatment compared to the rotary kiln treatment. However, the mass production is so difficult in the microwave process.

  • PDF

Effects of Filtration on the Characteristics of Reused Waste Brine in Kimchi Manufacturing (배추 절임 중 반복사용 폐염수의 여과처리 효과)

  • Yoon, Hye-Hyun;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.444-448
    • /
    • 2002
  • The waste brine gained from successively reused brine during kimchi manufacturing can cause serious water pollution. We investigated the filtration effects on the physicochemical characteristics and microbial counts of the waste brine. Chinese cabbage was salted for five times successively, and the waste brines were filtered through sand and active carbon column. While original values of salinity and soluble solid contents of waste brine were 15.4% and $18.0^{\circ}$Brix$, respectively, we observed decrease of them to 0.1% and $0.0^{\circ}$Brix$, respectively, after filtration of the waste brine through sand followed by active carbon column. The filtration also recover pH value of the waste brine to its original value, which was decreased by successive salting from 8.3 to 6.0. We also observed that COD of waste brine increased to 63.2 ppm after five times of salting but decreased to 5.1 ppm after active carbon filtration. Total viable count was also increased with successive 5 steps of salting and was not detected after active carbon-filtration.

Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Electode reaction of Fuel cell (연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Lee, Kug-Seung;Choi, Baeck-Beom;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.316-319
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an at toying process occurred during the successive reducing process The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Catalytic effects of heteroatom-rich carbon-based freestanding paper with high active-surface area for vanadium redox flow batteries

  • Lee, Min Eui;Kwak, Hyo Won;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.28
    • /
    • pp.105-110
    • /
    • 2018
  • Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (${\sim}820m^2g^{-1}$) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (${\Delta}E_p$) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of $5mV\;s^{-1}$. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.

Electrocatalytic activity of carbon-supported near-surface alloys (NSAs) for electrode reaction of fuel cell (연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Sung, Yung-Eun
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.64-69
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of polymer electrolyte membrane fuel cells [PEMFCs] for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the supporting of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an alloying process occurred during the successive reducing process. The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one [Johnson-Matthey] for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Electrochemical Characteristics of $LiMn_2O_4$+Activated Carbon Electrode for Supercapacitor (Supercapacitor용 $LiMn_2O_4$+Activated Carbon 전극의 전기화학적 특성)

  • Jeon, Min-Je;Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In;Im, Young-Tek;Lee, Sang-Hyun;Lee, Moon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.595-596
    • /
    • 2005
  • This research which it sees adds $LiMn_2O_4$ in the activated carbon electrode the test against the effect which it follows is. Test cells, which were $LiMn_2O_4$fabricated with active mass composite consisted of (100-X)% of MSP-20 and (X)% of $LiMn_2O_4$ (X=20,40,60,80,100), exhibits the better specific capacitance than those of the cells fabricated with single active mass that is MSP-20. The enhanced properties of composite active mass could be caused by capability of $LiMn_2O_4$ powders. But the resistance was increase by proportionate in $LiMn_2O_4$ addition and when mixture ratio of the activated carbon and the $LiMn_2O_4$ being similar, to be low rather to the after where had become the maximum it came.

  • PDF

Impact of carbon dioxide on the stability of the small-scale structures by trapping the material properties

  • Zhou, Yunlong;Wang, Jian
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • The existence of active material in the environment causes the small-scale systems to be sensitive to the actual environment. Carbon dioxide is one of the active materials that exists a lot in the air conditions of the living environment. However, in some applications, the carbon dioxide-coated is used to improve the performance of systems against the destructive factors such as the corrosion; nevertheless, in the current research, the stability analysis of a carbon dioxide capture mechanism-coated beam is investigated according to the mathematical simulation of a rectangular composite beam utilizing the modified couple stress theory. The composite mechanism of carbon dioxide trapping is made of a polyacrylonitrile substrate that supports a cross-link polydimethylsiloxane gutter layer as the carbon dioxide mechanism trapping. Three novel types of carbon dioxide trapping mechanism involving methacrylate, poly (ethylene glycol) methyl ether methacrylate, and three pedant methacrylates are considered, which were introduced by Fu et al. (2016). Finally, according to introducing the methodology of carbon dioxide (CO2) trapping, the impact of various effective parameters on the stability of composite beams will be analyzed in detail.

Effect of Supplement nutrition on the Mycelial Growth of Lentinus edodes

  • Yang, Jae-Kyung;Kim, Tae-Hong;Lim, Bu-Kug
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.60-66
    • /
    • 2003
  • Mycelial growth of L. edodes by supplement nutrition of softwood was studied on a sawdust medium. The sawdust used was from the following softwood species : Larix leptolepis, Pinus densiflora and Pinus koraiensis. The added nutritions consisted of carbon nutritions(sucrose, active carbon, xylose, glucose, paper pellet), nitrogen nutritions(potassium nitrate, ammonium chloride, asparagine, glutamic acid) and vegetable oil(rice bran oil). The sawdust medium was a mixture of 76% sawdust, 20% rice bran, 3% carbon nutrition, 0.4% nitrogen nutrition and 0.6% calcium carbonate. Following addition of carbon and nitrogen nutritions on the sawdust medium proved most suitable : L. leptolepis (glucose, glutamic acid), P. densiflora (active carbon, asparagine) and P. koraiensis (xylose, glutamic acid). The highest mycelial growth was obtained from sawdust medium of optimum condition with 97% of L. leptolepis, 110% of P. densiflora and 98% of P. koraiensis. This study has provided useful preliminary information for the cultivation of L. edodes.

Comparison of Antioxidant Activity of Vegetable Oil by Using Adsorbents (식물성 압착오일의 흡착제에 따른 항산화 활성 비교)

  • Ku, Hee-Yeon;Lee, Ki-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.57-62
    • /
    • 2018
  • This study was designed to analyze the chemical composition and antioxidant activity of various vegetable oils (pumpkin seed oil, camellia seed oil, red pepper seed oil and peanut oil) using adsorbents (active carbon, acid clay, kaolin). Their chemical composition was analyzed by GCMS. Their antioxidant activity was evaluated by measuring their DPPH and ABTS radical scavenging activity. After the treatment with the adsorbents, the contents of most of the fatty acids and active ingredients contained in the four kinds of vegetable oils were reduced. After the treatment with the three adsorbents, the linoleic acid and erythrodiol contents of the pumpkin seed oil were reduced. In the case of the camellia seed oil, the fatty acids content was decreased, but there was no loss of vitamin E after the acid clay treatment. The content of the compound capsaicin, which forms part of the spicy component of red pepper seed oil, was reduced by 53.33% after the acid clay treatment. The peanut oil showed the lowest loss of sitosterol compound in the group treated with active carbon. The antioxidant activity was observed to be in the order of pumpkin seed oil (kaolin>acid clay>active carbon), camellia seed oil (acid clay>kaolin>active carbon), red pepper seed oil (kaolin>acid clay>active carbon) and peanut oil (active carbon>acid clay>kaolin).

Studies on Reduction of Quinclorac Phytotoxicity in Ginseng Growth (인삼에 대한 제초제 Quinclorac의 약해 경감 연구)

  • 이일호;김명수
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.101-105
    • /
    • 1996
  • Several attempts have been made to protect crops against injury from herbicide quinclorac residue in soil. In this experiment, a selection of suitable crops for bioassay of the residue and a reduction of phytotoxicity by treatment with active carbon were carried out to prevent or to counteract the phytotoxicity. Cucumber (Cuumts satims) and kidney bean (Phaseolus Mgaris) were the suitable indicator plant in points of a sensitivity to the herbicide residue and an easy cultivation. The phytotoxicity was able to be observed at 20 and 30 days after seeding on kidney bean and cucumber respectively. In pot trials, application of the active carbon at 50 kg/10a protected effectively the 2-year-old ginseng plant from the injury in a paddy soil where the herbicide had been treated at 3 g a. i./10a.

  • PDF