• Title/Summary/Keyword: active appearance model

Search Result 69, Processing Time 0.028 seconds

Active Appearance Model using Multi-linear Analysis based on Tensor (Tensor 기반의 Multi-linear Analysis 를 이용한 Active Appearance Model)

  • Jo, Gyeong-Sic;Kim, Yong-Guk
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.197-202
    • /
    • 2009
  • Active Appearance Models(AAMs)은 얼굴인식, 얼굴추적, 표정인식 뿐만 아니라 눈동자 추적과 같은 분야에도 적용되어 좋은 성능을 보여 주었다. 보통 AAM 을 생성하기 위해서는 얼굴 영상과 얼굴의 특징을 나타내는 점으로 구성된 매쉬로 이루어 지는 트레이닝 셋이 필요하다. AAM fitting algorithm 은 학습한 얼굴과 유사한 얼굴을 Fitting 할 때에는 뛰어난 성능을 보이지만 조명에 의한 그림자 또는 액세서리에 의한 얼굴의 피부 가림과 같이 전체 얼굴이 잘 나타나지 않는 불완전한 영상의 Fitting 은 입력영상과 템플릿 영상간의 오차가 커지기 때문에 실패할 가능성이 매우 높다. 본 논문에서 우리는 AAMs 에서 사용되는 PCA를 Higher-order Singular Value Decomposition(HOSVD)로 대체하여 이 문제를 보완하는 강화된 AAM 을 제안한다. 제안된 AAM 에는 기존에 사용하던 고유벡터와 함께 HOSVD 를 통해 획득할 수 있는 Eigen-Modes 를 추가하여 사용한다. 또한 우리는 Yale Face Database를 이용한 평가를 통해 제안된 AAM 이 기존 AAM 보다 불완전한 영상에 효과적으로 대응하는 것을 보여준다.

  • PDF

Fitting Enhancement of AAM Using Synthesized Illumination Images (조명 영상 합성을 통한 AAM 피팅 성능 개선)

  • Lee, Hyung-Soo;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.409-414
    • /
    • 2007
  • Active Appearance Model is a well-known model that can represent a non-rigid object effectively. However, since it uses the fixed appearance model, the fitting results are often unsatisfactory when the imaging condition of the target image is different from that of training images. To alleviate this problem, incremental AAM was proposed which updates its appearance bases in an on-line manner. However, it cannot deal with the sudden changes of illumination. To overcome this, we propose a novel scheme to update the appearance bases. When a new person appears in the input image, we synthesize illuminated images of that person and update the appearance bases of AAM using it. Since we update the appearance bases using synthesized illuminated images in advance, the AAM can fit their model to a target image well when the illumination changes drastically. The experimental results show that our proposed algorithm improves the fitting performance over both the incremental AAM and the original AAM.

  • PDF

Feasibility Study of a Distributed and Parallel Environment for Implementing the Standard Version of AAM Model

  • Naoui, Moulkheir;Mahmoudi, Said;Belalem, Ghalem
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.149-168
    • /
    • 2016
  • The Active Appearance Model (AAM) is a class of deformable models, which, in the segmentation process, integrates the priori knowledge on the shape and the texture and deformation of the structures studied. This model in its sequential form is computationally intensive and operates on large data sets. This paper presents another framework to implement the standard version of the AAM model. We suggest a distributed and parallel approach justified by the characteristics of the model and their potentialities. We introduce a schema for the representation of the overall model and we study of operations that can be parallelized. This approach is intended to exploit the benefits build in the area of advanced image processing.

A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model (Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구)

  • Kim, Dong-Ju;Shin, Jeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.

Accurate Face Pose Estimation and Synthesis Using Linear Transform Among Face Models (얼굴 모델간 선형변환을 이용한 정밀한 얼굴 포즈추정 및 포즈합성)

  • Suvdaa, B.;Ko, J.
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.508-515
    • /
    • 2012
  • This paper presents a method that estimates face pose for a given face image and synthesizes any posed face images using Active Appearance Model(AAM). The AAM that having been successfully applied to various applications is an example-based learning model and learns the variations of training examples. However, with a single model, it is difficult to handle large pose variations of face images. This paper proposes to build a model covering only a small range of angle for each pose. Then, with a proper model for a given face image, we can achieve accurate pose estimation and synthesis. In case of the model used for pose estimation was not trained with the angle to synthesize, we solve this problem by training the linear relationship between the models in advance. In the experiments on Yale B public face database, we present the accurate pose estimation and pose synthesis results. For our face database having large pose variations, we demonstrate successful frontal pose synthesis results.

Face Landmark Detection Using Local Component Model (국부적 요소 모델을 이용한 얼굴 특징점 추출)

  • Kim, Dae-Hwan;Jeon, Seung-Seon;O, Du-Sik;Jo, Seong-Won;Kim, Jae-Min;Kim, Sang-Hun;Jeong, Seon-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.143-146
    • /
    • 2007
  • 객체의 특징점을 추출할 때, 일반적으로 모델 기반 접근을 사용한다. 본 논문에서는 이러한 모델 기반 특징점 추출 알고리즘으로 PCA를 근간으로 하는 Active Appearance Model을 이용하는데, 기존의 AAM 알고리즘은 모든 특징점을 하나의 군집으로 기준하여 PCA를 수행하지만 본 논문에서는 이것을 각 주요 부위별 학습 모델로 분리하여 수행한다. 그리고 이러한 모델에서 특징점을 찾을 때, 발산하는 문제에 빠지지 않기 위한 방법을 제시한다. 제시한 방법의 모델을 이용하여 실험 할 경우의 결과와 이를 통한 개별 모델의 특성에 대하여 파악한 결과를 제시한다.

  • PDF

Feature Detection and Simplification of 3D Face Data with Facial Expressions

  • Kim, Yong-Guk;Kim, Hyeon-Joong;Choi, In-Ho;Kim, Jin-Seo;Choi, Soo-Mi
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.791-794
    • /
    • 2012
  • We propose an efficient framework to realistically render 3D faces with a reduced set of points. First, a robust active appearance model is presented to detect facial features in the projected faces under different illumination conditions. Then, an adaptive simplification of 3D faces is proposed to reduce the number of points, yet preserve the detected facial features. Finally, the point model is rendered directly, without such additional processing as parameterization of skin texture. This fully automatic framework is very effective in rendering massive facial data on mobile devices.

Analysis of Facial Movement According to Opposite Emotions (상반된 감성에 따른 안면 움직임 차이에 대한 분석)

  • Lee, Eui Chul;Kim, Yoon-Kyoung;Bea, Min-Kyoung;Kim, Han-Sol
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, a study on facial movements are analyzed in terms of opposite emotion stimuli by image processing of Kinect facial image. To induce two opposite emotion pairs such as "Sad - Excitement"and "Contentment - Angry" which are oppositely positioned onto Russell's 2D emotion model, both visual and auditory stimuli are given to subjects. Firstly, 31 main points are chosen among 121 facial feature points of active appearance model obtained from Kinect Face Tracking SDK. Then, pixel changes around 31 main points are analyzed. In here, local minimum shift matching method is used in order to solve a problem of non-linear facial movement. At results, right and left side facial movements were occurred in cases of "Sad" and "Excitement" emotions, respectively. Left side facial movement was comparatively more occurred in case of "Contentment" emotion. In contrast, both left and right side movements were occurred in case of "Angry" emotion.

Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis

  • Boussaad, Leila;Benmohammed, Mohamed;Benzid, Redha
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.392-409
    • /
    • 2016
  • The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.

Multiple Human Recognition for Networked Camera based Interactive Control in IoT Space

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2019
  • We propose an active color model based method for tracking motions of multiple human using a networked multiple-camera system in IoT space as a human-robot coexistent system. An IoT space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of IoT space as well. One of the main goals of IoT space is to assist humans and to do different services for them. In order to be capable of doing that, IoT space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and IoT space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in IoT space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.