• 제목/요약/키워드: activator protein-1

검색결과 411건 처리시간 0.041초

Effects of Korean Red Ginseng extract on tissue plasminogen activator and plasminogen activator inhibitor-1 expression in cultured rat primary astrocytes

  • Ko, Hyun Myung;Joo, So Hyun;Kim, Pitna;Park, Jin Hee;Kim, Hee Jin;Bahn, Geon Ho;Kim, Hahn Young;Lee, Jongmin;Han, Seol-Heui;Shin, Chan Young;Park, Seung Hwa
    • Journal of Ginseng Research
    • /
    • 제37권4호
    • /
    • pp.401-412
    • /
    • 2013
  • Korean Red Ginseng (KRG) is an oriental herbal preparation obtained from Panax ginseng Meyer (Araliaceae). To expand our understanding of the action of KRG on central nervous system (CNS) function, we examined the effects of KRG on tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) expression in rat primary astrocytes. KRG extract was treated in cultured rat primary astrocytes and neuron in a concentration range of 0.1 to 1.0 mg/mL and the expression of functional tPA/PAI-1 was examined by casein zymography, Western blot and reverse transcription-polymerase chain reaction. KRG extracts increased PAI-1 expression in rat primary astrocytes in a concentration dependent manner (0.1 to 1.0 mg/mL) without affecting the expression of tPA itself. Treatment of 1.0 mg/mL KRG increased PAI-1 protein expression in rat primary astrocytes to $319.3{\pm}65.9%$ as compared with control. The increased PAI-1 expression mediated the overall decrease in tPA activity in rat primary astrocytes. Due to the lack of PAI-1 expression in neuron, KRG did not affect tPA activity in neuron. KRG treatment induced a concentration dependent activation of PI3K, p38, ERK1/2, and JNK in rat primary astrocytes and treatment of PI3K or MAPK inhibitors such as LY294002, U0126, SB203580, and SP600125 (10 ${\mu}M$ each), significantly inhibited 1.0 mg/mL KRG-induced expression of PAI-1 and down-regulation of tPA activity in rat primary astrocytes. Furthermore, compound K but not other ginsenosides such as Rb1 and Rg1 induced PAI-1 expression. KRG-induced up-regulation of PAI-1 in astrocytes may play important role in the regulation of overall tPA activity in brain, which might underlie some of the beneficial effects of KRG on CNS such as neuroprotection in ischemia and brain damaging condition as well as prevention or recovery from addiction.

Protein Kinase CK2 Is Upregulated by Calorie Restriction and Induces Autophagy

  • Park, Jeong-Woo;Jeong, Jihyeon;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.112-121
    • /
    • 2022
  • Calorie restriction (CR) and the activation of autophagy extend healthspan by delaying the onset of age-associated diseases in most living organisms. Because protein kinase CK2 (CK2) downregulation induces cellular senescence and nematode aging, we investigated CK2's role in CR and autophagy. This study indicated that CR upregulated CK2's expression, thereby causing SIRT1 and AMP-activated protein kinase (AMPK) activation. CK2α overexpression, including antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760, stimulated autophagy initiation and nucleation markers (increase in ATG5, ATG7, LC3BII, beclin-1, and Ulk1, and decrease in SQSTM1/p62). The SIRT1 deacetylase, AKT, mammalian target of rapamycin (mTOR), AMPK, and forkhead homeobox type O (FoxO) 3a were involved in CK2-mediated autophagy. The treatment with the AKT inhibitor triciribine, the AMPK activator AICAR, or the SIRT1 activator resveratrol rescued a reduction in the expression of lgg-1 (the Caenorhabditis elegans ortholog of LC3B), bec1 (the C. elegans ortholog of beclin-1), and unc-51 (the C. elegans ortholog of Ulk1), mediated by kin-10 (the C. elegans ortholog of CK2β) knockdown in nematodes. Thus, this study indicated that CK2 acted as a positive regulator in CR and autophagy, thereby suggesting that these four miRs' antisense inhibitors can be used as CR mimetics or autophagy inducers.

SPR 근거 DNA 칩을 이용한 페놀 화합물 특이 CapR 조절 단백질과 촉진유전자와의 상호작용 연구 (Interaction of Phenolic Compound-Specific Activator with Its Promoter using SPR-Based DNA Chip)

  • 박선미;박후휘;임운기;신혜자
    • 생명과학회지
    • /
    • 제13권1호
    • /
    • pp.99-104
    • /
    • 2003
  • Aromatic compounds are of major concern among environmental pollutants due to their toxicity and persistence. To monitor aromatic compounds in a real time with a better sensitivity, a new method of SPR (surface plasmon resonance) based on DNA chip (Biacore 3000) was developed here. It is thought that CapR regulatory protein as a complex with phenol, could bind to their corresponding promoter, Po. Biotinylated DNA oligomers for the promoter was synthesized by PCR and coupled onto streptoavidin-linked CM5-chip. CapR regulatory proteins were purified after cloning their genes in pET21a (+) vector and expressing proteins. The interaction was assessed by the system where the regulatory proteins flowed with or without phenol through the cells of DNA chip. CapR regulatory protein even in the presence of phenol had no response to its promoter, Po, suggesting that other factor(s) might be required for the activation of Po promoter. The present work reveals a promising possibility of the SPR-based DNA chip in monitoring specific environmental pollutants in a real time.

Mechanistic target of rapamycin and an extracellular signaling-regulated kinases 1 and 2 signaling participate in the process of acetate regulating lipid metabolism and hormone-sensitive lipase expression

  • Li, Yujuan;Fu, Chunyan;Liu, Lei;Liu, Yongxu;Li, Fuchang
    • Animal Bioscience
    • /
    • 제35권9호
    • /
    • pp.1444-1453
    • /
    • 2022
  • Objective: Acetate plays an important role in host lipid metabolism. However, the network of acetate-regulated lipid metabolism remains unclear. Previous studies show that mitogen-activated protein kinases (MAPKs) and mechanistic target of rapamycin (mTOR) play a crucial role in lipid metabolism. We hypothesize that acetate could affect MAPKs and/or mTOR signaling and then regulate lipid metabolism. The present study investigated whether any cross talk occurs among MAPKs, mTOR and acetate in regulating lipid metabolism. Methods: The ceramide C6 (an extracellular signaling-regulated kinases 1 and 2 [ERK1/2] activator) and MHY1485 (a mTOR activator) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. Results: It indicated that acetate (9 mM) treatment for 48 h decreased the lipid deposition in rabbit ADSCs. Acetate treatment decreased significantly phosphorylated protein levels of ERK1/2 and mTOR but significantly increased mRNA level of hormone-sensitive lipase (HSL). Acetate treatment did not significantly alter the phosphorylated protein level of p38 MAPK and c-Jun aminoterminal kinase (JNK). Activation of ERK1/2 and mTOR by respective addition in media with ceramide C6 and MHY1485 significantly attenuated decreased lipid deposition and increased HSL expression caused by acetate. Conclusion: Our results suggest that ERK1/2 and mTOR signaling pathways are associated with acetate regulated HSL gene expression and lipid deposition.

마우스 난 성숙과정에서의 Thymeleatoxin의 영향 (Effect of Thymeleatoxin on Mouse Oocyte Maturation)

  • 임은아;신지현;최태생
    • Reproductive and Developmental Biology
    • /
    • 제28권3호
    • /
    • pp.187-190
    • /
    • 2004
  • PKC는 그들의 cofactor-requirments에 따라 cPKC, nPKC 그리고 aPKC, 3그룹으로 나어진다. 마우스 난 성숙과정에 있어서 cPKC 및 nPKC의 activators인 PMA의 영향에 대한 많은 결과가 보고되었다. 그러나 각각의 그룹에 대한 차별화된 영향에 대하여는 밝혀져 있지 않다. Mezerein의 analog인 thymeleatoxin은 cPKC의 특이적인 activator로 보고되어져 있다. 본 연구에서는 specific cPKC activator인 thymeleatoxin의 마우스 난 성숙과정에의 영향을 제1감수분열 재개 능(germinal vesicle break down, GVBD)과 제1 극체 형성 능(1st polar body extrusion)을 조사하여 cPKC및 nPKC activator인 PMA와 비교 검토하였다. 그 결과 GVBD IC50는 thymeleatoxin에서 ~400nM, PMA에서는 ~50nM이었으며, 제1극체 방출의 IC50는 thymeleatoxin에서 ~200nM, PMA에서는 ~20nM이었다. 이들 결과는 Thymeleatoxin의 GVBD나 1st polar body extrusion 저해효과가 PMA에 비하여 1/8~1/10인 것으로 나타났다. 이들 결과는 GVBD나 제1극체 형성을 포함하는 난 성숙과정에서 cPKC보다 상대적으로 nPKC의 관여가 깊음을 보여 준다.

원지(遠志)의 항염증 작용에 대한 연구 (Anti-inflammatory activity of the water extract of Polygala tenuifolia Willd)

  • 오현석;김병우
    • 대한한방내과학회지
    • /
    • 제34권2호
    • /
    • pp.204-214
    • /
    • 2013
  • Objectives : This study was designed to investigate the cellular and molecular mechanisms of anti-inflammatory activity of the water extract of Polygala tenuifolia Willd. (Pt-WE). Methods : Using lipopolysaccharide (LPS)-stimulated murine RAW264.7 cells, we examined inflammatory mediators such as nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin $E_2$ ($PGE_2$). Also, the inhibitory effect of Pt-WE on the activity of activator protein 1 (AP-1) and upstream signaling molecules was evaluated. To assess the protective effect of Pt-WE on hydrochloride/ethanol (HCl/EtOH)-induced gastric ulcer in mice, we compared Pt-WE (200 mg/kg) with ranitidine (50 mg/kg) treated mice's gastric mucosa, based on gross observations. Results : Pt-WE inhibited LPS-induced production of NO, $PGE_2$ in a dose-dependent manner, without causing cytotoxicity. Pt-WE suppressed AP-1 activation by reducing generations of both c-Jun and c-Fos. In addition, Pt-WE inhibited the p-MKK 4/7 (mitogen-activated protein kinase kinase 4/7) and p-JNK (c-Jun N-terminal kinase) 1 in LPS-stimulated RAW264.7 cells. HCl/EtOH-induced gastric ulcer lesions were inhibited by pre-treatment of Pt-WE based on gross observations. In addition, Pt-WE decreased the phosphorylation level of JNK. Conclusions : These results demonstrate that Pt-WE has anti-inflammatory and gastroprotective effects. Thus, Pt-WE may be used widely in treatment of not only neurodegenerative diseases but also inflammatory diseases.

꾸지뽕나무 뿌리 추출물의 파골세포 분화 억제 효과 (Inhibitory Effects of the Roots of Cudrania tricuspidata Bureau on Osteoclast Differentiation)

  • 김유경;정길생
    • 생약학회지
    • /
    • 제48권2호
    • /
    • pp.155-159
    • /
    • 2017
  • Cudrania tricuspidata Bureau (Moraceae) is a traditional oriental medicine that has been widely used as anti-oxidant, anti-inflammatory and immunomodulatory in Korea. This study was performed that the 70% ethanol extract of the roots of C. tricuspidata (CTE) suppressed receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclastogenesis, actin ring formation in RAW 264.7 cell lines. CTE significantly inhibited the JNK/mitogen-activated protein kinase (MAPK) signaling pathway without affecting ERK and p38 signaling in RANKL-stimulated RAW 264.7 cells. Also, CTE inhibited RANKL-induced expression of c-Fos, an upstream activator of NFATc1. Consequently, CTE suppresses osteoclast differentiation by inhibiting RANKL induced MAPK signaling pathways and disrupts the actin rings in mature osteoclasts. Thus, CTE can be used for the development of osteoporosis treatment drug with a natural material.

Mechanisms of amino acid sensing in mTOR signaling pathway

  • Kim, Eun-Jung
    • Nutrition Research and Practice
    • /
    • 제3권1호
    • /
    • pp.64-71
    • /
    • 2009
  • Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including cancer, diabetes, and tissue hypertrophy. Although amino acids are the most potent activator of mTORC1, how amino acids activate mTOR signaling pathway is still largely unknown. This is partly because of the diversity of amino acids themselves including structure and metabolism. In this review, current proposed amino acid sensing mechanisms to regulate mTORC1 and the evidences pro/against the proposed models are discussed.

브라디키닌의 Phospholipase D 활성화기전

  • 박경협;정진호;정성현;정지창
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.274-274
    • /
    • 1994
  • 본 연구에서는 토끼신장 근위세뇨관 일차배양세포에서 브라디키닌의 생리작용이 phospholipase D (PLD)에 의해 매개되는지를 살펴 보기위해 PLD 효소반응의 특이한 성질인 transphosphatidylation 반응의 생성물인 phosphatidylethanol (PEth) 의 세포내 양을 측정함으로 PLD 효소의 관련성을 규명할 수 있었다. 시간경과에 따른 phosphatidic acid (PA) 및 diacylglycerol (DAG) 의 생성을 살펴본 결과 PA가 DAG보다 먼저 생성되어 최고치 (30초)에 도달하였고 DAG는 1분이후부터 5분까지 서서히 생성되는 양상을 나타내었다. 또한 0.5에서 5%까지의 에탄올 존재하에 PA 및 PE소 생성량을 비교해본 결과 에탄올량이 증가함에 따라 PA는 감소하는 반민 PEth 의 생성은 계속 증가하였다. 한편 브라디키닌 농도 변화 실험에서는 브라디키닌농도가 증가함에 따라 PA 및 PEth 둘다 생성이 증가되었다. 이러한 결과로부터 토끼신장 근위세뇨관 세포막에 존재하는 브라디키닌수용체는 브라디키닌에 의해 activation 시 PLD를 직접적으로 활성화시켜 그들의 작용을 세포내로 전달한다는 사실을 알 수 있었다. 또한 PLD 효소활성의 activator로 수용체효능 제외에 칼슘이온, protein kinase C (PKC) 등이 몇몇 다른 실험에 의해 밝혀져 있고, G protein 역시 PLD 효소 활성을 조절하는 역할이 있음이 알려졌다. calcium ionophore 및 칼슘채널길항제인 verapamil을 이용한 실험에서 우리는 브라디키닌의 PLD 활성화는 칼슘이온에 의존적인 경로 및 비의존적인 경로가 같이 존재함을 알수 있었다. 또한 브라디키닌의 PLD 활성화기전이 PKC 의존적인지를 살펴보기위해 PKC activator(PMA) 및 inhibitor (staurosporine)를 이용한 실험에서 브라디키닌은 신장세포에서 PKC를 통하여 PLD를 활성화시킴으로 신호전달을 하는 것으로 추측되었다. 마지막으로 가수분해안되는 G protein 유도체인 GTPrS 및 G protein 활성물질 NaF, 백일해독소등을 이용한 실험에서 G protein 의 PLD 조절활성을 확인할 수 있었다.

  • PDF

붕어 난모세포의 성숙과 배란 과정에서 cyclic AMP와 protein kinase C의 역할 (Roles of Cyclic AMP and Protein Kinase C in the Oocyte Maturation and Ovulation in Crucian Carp, Carusius auratus)

  • 이원교;양석우;황세원
    • 한국양식학회지
    • /
    • 제8권3호
    • /
    • pp.171-181
    • /
    • 1995
  • 붕어의 년 생식주기를 밝히기 위해 1993년 2월부터 1994년 10월까지 gonadosomatic index (GSI)를 조사하였다. GSI는 4월부터 7월까지는 높은 수준을 나타내며 개체간에 편차가 큰 것으로 보아 이 기간이 산란기임을 보여준다. 8월부터 9월까지는 년중에서 가장 낮은 수준이며 이때 난소내 여포는 퇴화가 진행 중이었다 10월부터 GSI 값은 증가하여 이듬해 3월에 최대치를 보였다. Human chorionic gonadotropin (HCG 10 lU), $17\alpha$, 20\beta-dihydroxyprogesterone\;(1-100{\mu}g/ml)$ 및 phorbol 12-myristate 13-acetate (TPA, protein kinase C activator, 0.1-10${\mu}M$)는 인공배양 시 난모세포의 성숙을 유도하였으나 $4\alpha-phorbol$ 12, 13-didicanoate ($4\alpha-PDD$, phorbol ester analogue, $(25{\mu}M$)는 성숙을 일으키지 않았다. 또한, HCG (10 IU), prostaglandin $F_{2\alpha}$ (0.1-10${\mu}g/ml$) 및 TPA (0.1-10${\mu}M$)는 난모세포의 배란을 유도하였으나 $4\alpha-PDD$$(25\;{\mu}M)$에 의해서는 배란이 일어나지 않았다. 여포세포의 $17\alpha-hydroxyprogesterone$은 HCG (1 IU, 10 IU) 및 forskolin (adenylate cyclase activator, 0.1-10 ${\mu}M$)에 의해 생성이 촉진되었으며 HCG (10 IU) 및 forskolin $(10 {\mu}M)$에 의한 time course 는 3시간 내에 생성량이 증가하여 시간경과에 따른 유의한 차이는 보이지 않았다. 이러한 결과를 종합하면 cyclic AMP와 protein kinase C 는 어류의 난모세포의 성숙과 배란과정에 매우 중요한 역할을 담당하는 것으로 생각된다.

  • PDF