• Title/Summary/Keyword: activated sintering

Search Result 86, Processing Time 0.031 seconds

Effect of Mold Dimensions on Temperature Distribution of Die during Plasma Activated Sintering (플라즈마 활성 소결에 있어서 다이스의 온도분포에 미치는 몰드 크기의 영향)

  • Lee Gil-Geun;Park IK-Min
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.363-368
    • /
    • 2004
  • In the present study, the focus is on the analysis of the effect of the mold dimensions on the temperature distribution of a die during plasma activated sintering. The temperature distribution of a cylindrical mold with various dimensions was measured using K-type thermocouples. The temperature homogeneity of the die was studied based on the direction and dimensions of the die. A temperature gradient existed in the radial direction of the die during the plasma activated sintering. Also, the magnitude of the temperature gradient was increased with increasing sintering temperature. In the longitudinal direction, however, there was no temperature gradient. The temperature gradient of the die in the radial direction strongly depended on a ratio of die volume to punch area.

Fabrication and Property Evaluation of Cu-Mn Compacts for Sputtering Target Application by a Pulsed Current Activated Sintering Method (펄스전류활성소결법을 이용한 스퍼터링 타겟용 Cu-Mn 소결체 제조 및 특성평가)

  • Jang, Jun-Ho;Oh, Ik-Hyun;Lim, Jae-Won;Park, Hyun-Kuk
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Cu-Mn compacts are fabricated by the pulsed current activated sintering method (PCAS) for sputtering target application. For fabricating the compacts, optimized sintering conditions such as the temperature, pulse ratio, pressure, and heating rate are controlled during the sintering process. The final sintering temperature and heating rate required to fabricate the target materials having high density are $700^{\circ}C$ and $80^{\circ}C/min$, respectively. The heating directly progresses up to $700^{\circ}C$ with a 3 min holding time. The sputtering target materials having high relative density of 100% are fabricated by employing a uniaxial pressure of 60 MPa and a sintering temperature of $700^{\circ}C$ without any significant change in the grain size. Also, the shrinkage displacement of the Cu-Mn target materials considerably increases with an increase in the pressure at sintering temperatures up to $700^{\circ}C$.

Effect of Temperature on Sintering Properties in Zirconia Fabricated by Plasma Activated Sintering (Plasma Activated Sintering법으로 제조된 지르코니아의 소결특성에 미치는 온도의 영향)

  • 신종호;정연길;허성강
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.9
    • /
    • pp.856-863
    • /
    • 2000
  • 상압 소결법과 통전활성 소결(Plasma Activated Sintering; PAS)법으로 120$0^{\circ}C$부터 150$0^{\circ}C$의 온도범위에서 제조된 지르코니아의 기계적 특성을 ring on ring disk 굽힘시험으로 비교하여 고찰하였다. 모든 소결온도범위에서 PAS법으로 제조된 소결체의 밀도와 경도는 상압 소결법에 의해 제조된 소결체 보다 높게 나타났다. 결정립의 크기는 두 소결법에 의해 제조된 소결체 모두에서 소결온도 증가에 따라 증가하였으나, PAS법으로 제조된 소결체가 상압 소결법으로 제조된 소결체 보다는 결정립 성장이 억제되었다. 파괴인성은 PAS법으로 제조된 소결체의 경우 130$0^{\circ}C$에서 최고값을 나타낸 후 소결온도 증가에 따라 미세하게 감소하였으며, 상압 소결법으로 제조된 소결체의 경우 소결온도 증가에 따라 증가되었다. 소결체의 상분율 변화는 PAS법으로 제조된 경우 전 온도범위 (1200~150$0^{\circ}C$)에서 정방정상만 관찰되었으며, 상압 소결법의 경우 단사정상과 정방정상의 혼합상을 나타내었고, 소결온도 증가에 따라 정방정상의 비율이 증가하였다. 결과적으로 PAS법의 경우 지르코니아의 최적 소결온도는 130$0^{\circ}C$이며, 상압 소결법의 경우 150$0^{\circ}C$임을 알 수 있었으며, 소결체의 파괴인성에 미치는 영향은 결정립 크기 및 정방정상의 분율임을 확인할 수 있었다.

  • PDF

Low-temperature Sintering Behavior of TiO2 Activated with CuO

  • Paek, Yeong-Kyeun;Shin, Chang-Keun;Oh, Kyung-Sik;Chung, Tai-Joo;Cho, Hyoung Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.682-688
    • /
    • 2016
  • In $TiO_2$-CuO systems, low-temperature sinterability was investigated by a conventional sintering method. Sintering temperatures were set at under $950^{\circ}C$, at which the volume diffusion is inactive. The temperatures are less than the melting point of Ag ($961^{\circ}C$), which is often used as an internal conductor in low-temperature co-fired ceramic technology. To optimize the amount of CuO dopant, various dopant contents were added. The optimum level for enhanced densification was 2 wt% CuO. Excess dopants were segregated to the grain boundaries. The segregated dopants supplied a high diffusion path, by which grain boundary diffusion improved. At lower temperatures in the solid state region, grain boundary diffusion was the principal mass transport mechanism for densification. The enhanced grain boundary diffusion, therefore, improved densification. In this regard, the results of this study prove that the sintering mechanism was the same as that of activated sintering.

Thermal Characteristic Simulation and Property Evaluation of High Melting Point Materials by Pulsed Current Activated Sintering Process (PCAS공정에 의한 고융점 소결체 열전달 해석 및 특성분석)

  • Nam, Hyo-Eun;Jang, Jun-Ho;Park, Hyun-Kuk;Oh, Ik-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.214-222
    • /
    • 2017
  • In this study, the effects of internal heat treatment associated sintering temperatures were simulated by the Finite Element Method (FEM). The sintering mechanism of pulsed current activated sintering process (PCAS) is still unclear because of some unexplainable heat transfer phenomena in coupled multi-physical fields, as well as the difficulty in measuring the interior temperatures of metal powder. We have carried out simulation study to find out thermal distributions between graphite mold and Ruthenium powder prior to PCAS process. For PCAS process, heating rate was maintained at $100^{\circ}C/min$ the simulation indicates that the sintering temperature range was between $1000^{\circ}C$ to $1300^{\circ}C$ under 60 MPa. The heat transfer inside the Ruthenium sintered-body sample was modelled through the whole process in order to predict the minimum interior temperature. Thermal simulation shows that the interior temperature gradient decreased by graphite punch length and calculation results well agreed with the PCAS field test results.

Synthesis of TiB2 Dispersed Cu Matrix Composite Material by the Combination of the Mechanical Milling and Plasma Activated Sintering Process (기계적 밀링과 플라즈마 활성 소결법에 의한 TiB2 분산 Cu기 복합재료 제조)

  • Kim, Kyong-Ju;Lee, Gil-Geun;Park, Ik-Min
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.292-297
    • /
    • 2007
  • The present study was focused on the synthesis of a $TiB_2$ dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The $Cu/TiB_2$ mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized $Cu/TiB_2$ mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of $Cu/TiB_2$ composite material sintered at $800^{\circ}C$ showed about 98% of theoretical density. The $Cu-1vol%TiB_2$ composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of $Cu-3vol%TiB_2$ composite material were about 140 Hv and about 45% IACS, respectively.

Sintering of Ni-Based Amorphous Alloy Powders by Plasma Activated Sintering Process (PAS법을 이용한 Ni기 비정질 분말의 소결)

  • Koo, Ja-Min;Shin, Kee-Sam;Kim, Yoon-Bae;Bae, Jong-Soo;Hur, Sung-Kang
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.765-772
    • /
    • 2005
  • PAS(Plasma Activated Sintering) process was tried to apply for the fabrication of BMG(Bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5}\;and\;Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ from the as-atomized amorphous powder. Compressive strength for the BMG(bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5$ were lower than those of BMG rods produced by warm extrusion ,or copper mold casting method. Microstructural examination by optical microcope, SEM ana EDS showed that oxidation had occurred during PASintering. In order to prevent the powder from the oxidation during PASintering, Ni coating for $Ni_{57}Zr_{20}Ti_{18}Si_5$ amorphous powder by electroless-plating method was performed. Microstructural examination for Ni coated layers after PASintering indicated that the Ni coating had been so effective to prevent powder from oxidation during PASintering. Sintering behaviors of $Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ represent the same as those of $Ni_{57}Zr_{20}Ti_{18}Si_5$.

Synthesis of Intermetallics and Nanocomposites by High-Energy Milling

  • Bernd F. Kieback;H. Kubsch;Alexander Bohm;M. Zumdick;Thomas Weissgaerber
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.416-421
    • /
    • 2002
  • Elemental powders are used in high energy milling processes for the synthesis of new compounds. The low temperature solid state reactions during milling in inert gas atmosphere may result in intermetallic phases, carbides, nitrides or silicides with a nanocrystalline structure. To obtain dense materials from the powders a pressure assisted densification is necessary. On the other side the defect-rich microstructure can be used for activated sintering of elemental powder mixtures to obtain dense bodies by pressureless sintering. Results are discussed for nanocrystalline cermet systems and for the sintering of aluminides and silicides.