• Title/Summary/Keyword: activated red mud

Search Result 28, Processing Time 0.024 seconds

Porosity of Alkali-Activated Slag-Red Mud Soil Mixed Pavement of Red Mud Substitution Rate (알칼리활성화 슬래그-레드머드 흙포장재의 레드머드 대체율에 따른 기공특성)

  • Kang, Hye Ju;Kim, Byeong gi;Kim, Jae Hwan;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.91-92
    • /
    • 2016
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. the development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the pore characteristics of alkali-activated slag-red mud soil pavement according to the red mud content. The results showed that the porosity of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the red mud content increased.

  • PDF

Efflorescence Characteristics of Alkali-Activated Slag-Red Mud Soil Mixed Pavement of Red Mud Substitution Rate (알칼리활성화 슬래그-레드머드 흙포장재의 레드머드 대체율에 따른 백화 특성)

  • Kang, Hye Ju;Lee, Yeong;Oh, Du Yeon;Lee, Gyu Yeong;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.153-154
    • /
    • 2015
  • This study is alkali-activated slag-red mud soil mixed pavement of efflorescence characteristics analysis of mitigation measures is drawn to the red mud substitution rate in accordance with the alkali-activated slag-red mud soil mixed pavement of efflorescence characteristics were exhibited. As a result of alkali-activated slag-red mud soil mixed pavement is more substitution rate increases appeared to efflorescence is increased.

  • PDF

Development of Anti-red Tide Material by Activating Red-mud (적토의 활성화를 통한 적조구제물질 개발에 대한 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.267-276
    • /
    • 2005
  • The study is to determine the feasibility of activated red mud as an anti-red tide material. The red mud, a byproduct of Bayer process for the production of alumina from bauxite, contained hematite, boehmite, calcite, sodalite, quartz, zircon, anatase and an unknown phase. In the adsorption study of the red mud, its adsorption efficiencies for heavy elements were close to $100\%$ except $92\%$ In As. These results seem to be attributed by the high adsorption ability of iron oxides for heavy elements. As a result of leaching tests with the red mud at various pHs (pH $1\∼13$), the high leaching efficiencies for As, Cu and Zn at low pHs (at acidic condition) were obtained. It indicated that removal efficiency of heavy elements could be excellent in acidic treatment of red mud. The activated red mud, red mud reacted with acid, contained hematite, boehmite and so on, and desorption of heavy metals from the activated red mud increased with increasing temperature. The grain of the activated red mud was tens nm in size. The removal efficiency for 5 types of plankton was generally in inverse proportion to pH, especially to final pH. Of five plankton types, Prorocentrum minimum and Alexandrium tamarense promptly were removed more than $90\%$ as soon as the activated red mud was sprayed and $100\%$ after 30 minutes. These results indicated that the activated red mud seems to be a promising anti-red tide material.

Properties of Alkali-activated Slag-Red Mud Soil Pavement Using Recycled Aggregate (순환골재를 사용한 알칼리활성화 슬래그-레드머드 흙포장재의 특성)

  • Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.276-283
    • /
    • 2016
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. the development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, moisture absorption coefficient and efflorescence of alkali-activated slag-red mud soil pavement according to the recycling fine aggregate content. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the recycled fine aggregate content increased.

Strength and Pore Characteristics of Alkali-activated Slag-Red Mud Cement Mortar used Polymer According to Red Mud Content (레드머드 대체율에 따른 폴리머 혼입 알칼리활성화 슬래그-레드머드 시멘트모르타르의 강도 및 기공특성)

  • Kwon, Seung-Jun;Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • The alkali-slag-red mud(ASRC) cement belongs to clinker free cementitious material, which is made from alkali activator, blast-furnace slag(BFS) and red mud in designed proportion. This study is to investigate strength and pore characteristics of alkali-activated slag cement(NC), clinker free cementitious material, and ordinary portland cement(C) mortars using polymer according to red mud content. The results showed that the hardened alkali-activated slag-red mud cement paste was mostly consisted of C-S-H gel, being very fine in size and extremely irregular in its shape. So the hardened ASRC cement paste has lower total porosity, less portion of larger pore and more portion of smaller pore, as compared with those of hardened portland cement paste, and has higher strength within containing 10 wt.(%) of alkali-activated slag cement(NC) substituted by red mud.

Characteristic of Alkali-Activated Slag Red Mud Cement Concrete according to Liquefaction Red mud Input Method (액상 레드머드 첨가방식에 따른 ASRC 콘크리트의 특성)

  • Hwang, Byoung Il;Kang, Hye Ju;Park, Kyung Su;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.134-135
    • /
    • 2018
  • In this paper, we investigate the characteristic of ASRC concrete with the addition of liquefaction red mud using red ud which can be used as an alkali activator of alkali-activated slag cement. as a result, the compressive strength and the efflorescence area increased, and as the amount of liquid red mud increased, the compressive strength decreased and the efflorescence area increased.

  • PDF

Compaction Characteristic of Alkali Activated Slag-Red Mud Dry Pavement with Red Mud (레드머드 첨가에 따른 알칼리활성화 슬래그-레드머드 건식 흙포장재의 다짐 특성)

  • Kang, Hye Ju;Lee, Hu Seok;Hwang, Byuong Il;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.28-29
    • /
    • 2017
  • For this study, alkali-activated slag red-mud pavement is manufactured to examine the usability of red-mud as a recycling material in the construction industry. In the compaction curve in terms of the replacement ratio of red mud by binder type, the dry density changed gradually depending on the water content, which implies that there is no distinct difference in compaction according to the replacement ratio of red mud. The compressive strength at 28 days was observed to be 18.9~27.0MPa in ASS, and 18.4~28.8MPa in OPC, showing a similar level between the specimens.

  • PDF

Pore and Efflorescence Characteristics of Alkali Activated Slag-Red Mud Cement Mortar depending on Red Mud Content (레드머드 대체율에 따른 알칼리활성화 슬래그-레드머드 시멘트 모르타르의 기공 및 백화특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.261-268
    • /
    • 2017
  • Red mud is an inorganic by-product obtained from the mineral processing of alumina from Bauxite ores. A highly alkali inorganic waste product with a pH level over 11, red mud in its original state negatively impacts the ecosystem, so appropriate treatment is necessary. The development of alkali activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. However, Alkali-activated binders that use sodium activators have been reported to be more vulnerable to efflorescence. Therefore, in this study, the compressive strength, pore characteristics, water absorption, elution characteristics, and efflorescence properties of alkali-activated slag cement mortar were assessed according to their red mud substitution ratio.

Prediction of removal percentage and adsorption capacity of activated red mud for removal of cyanide by artificial neural network

  • Deihimi, Nazanin;Irannajad, Mehdi;Rezai, Bahram
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.273-281
    • /
    • 2018
  • In this study, the activated red mud was used as a new and appropriate adsorbent for the removal of ferrocyanide and ferricyanide from aqueous solution. Predicting the removal percentage and adsorption capacity of ferro-ferricyanide by activated red mud during the adsorption process is necessary which has been done by modeling and simulation. The artificial neural network (ANN) was used to develop new models for the predictions. A back propagation algorithm model was trained to develop a predictive model. The effective variables including pH, absorbent amount, absorbent type, ionic strength, stirring rate, time, adsorbate type, and adsorbate dosage were considered as inputs of the models. The correlation coefficient value ($R^2$) and root mean square error (RMSE) values of the testing data for the removal percentage and adsorption capacity using ANN models were 0.8560, 12.5667, 0.9329, and 10.8117, respectively. The results showed that the proposed ANN models can be used to predict the removal percentage and adsorption capacity of activated red mud for the removal of ferrocyanide and ferricyanide with reasonable error.

Effects of Moisture Absorption Coefficient of Alkali-Activated Slag-Red Mud Cement on Efflorescence (알칼리활성화 슬래그-레드머드 시멘트 모르타르의 흡수계수가 백화발생에 미치는 영향)

  • Kang, Hye Ju;Kim, Byeong gi;Kim, Jae Hwan;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.130-131
    • /
    • 2016
  • In this study, moisture absorption coefficient and efflorescence properties of Ordinary Portland cement and alkali-activated slag cement mortar were assessed according to their red mud substitution ratio. Tests were conducted to determine the cause of efflorescence, which is a significant obstacle to the recycling of red mud as a sodium activator in alkali-activated slag cement, and to find a method to control efflorescence.

  • PDF