• 제목/요약/키워드: activated nitrogen

검색결과 409건 처리시간 0.027초

연속 회분식 반응기에서 최적 질소 제거를 위한 최적 궤적 찾기와 재최적화 (Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal)

  • 김영황;유창규;이인범
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.73-80
    • /
    • 2007
  • 본 연구는 생물학적 폐수 처리 공정인 연속 회분식 반응기(sequencing batch reactor, SBR)에서 질소 제거 최적화를 위해 활성 오니 공정모델(activated sludge model, ASM No.1, ASM1)과 반복 동적 프로그래밍(iterative dynamic programming, IDP)을 이용하여 SBR의 처리 기준을 만족하면서 최적 운전 조건을 탐색하고 하는 것을 목적으로 하였다. 연속 회분식 반응기의 최적화를 위해 에너지 최소화와 최소 회분 시간이 질소 처리의 농도 그래프의 면적과 비례하는 점을 이용하여 이를 고려한 새로운 performance index를 제안하였다. 회분 시간과 에너지에 대항하는 면적에 적절한 비중(weight)을 줌으로써 최소 회분 시간과 최소 에너지 문제를 동시에 고려하였다. SBR에서 IDP를 이용한 최적 운전서 최적 용존 산소 농도의 설정치가 전체 회분 시간과 전체 에너지 비용에 동시에 영향을 미침을 알 수 있었고 최적 운전시 기존의 운전 방법과 같은 유기물과 질소 제거가 가능하고 동시에 전체 비용을 20%까지 줄일 수 있었다. 더 나아가 공정이상으로 실제 공정이 모델과 다른 모델링 에러에 의해 잘못된 모사의 경우에도 IDP를 이용하여 다시 재최적화할 수 있음을 보였다.

Comparative assessment on the influences of effluents from conventional activated sludge and biological nutrient removal processes on algal bloom in receiving waters

  • Park, Chul;Sheppard, Diane;Yu, Dongke;Dolan, Sona;Eom, Heonseop;Brooks, Jane;Borgatti, Douglas
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.276-283
    • /
    • 2016
  • The goal of this study was to evaluate the effect of effluents from conventional activated sludge (CAS) and biological nutrient removal (BNR) processes on algal bloom in receiving waters. We made multiple effluent sampling from one CAS and two BNR facilities, characterized their effluents, and conducted bioassay using river and ocean water. The bioassay results showed that CAS effluents brought similar productivity in both river and ocean water, while BNR effluents were more reactive and productive in ocean water. Unexpectedly, nitrogen-based biomass yields in ocean water were up to six times larger for BNR effluents than CAS effluent. These results indicated that nitrogen in BNR effluents, although its total concentration is lower than that of CAS effluent, is more reactive and productive in ocean water. The ocean water bioassay further revealed that effluents of BNR and CAS led to considerably different phytoplankton community, indicating that different characteristics of effluents could also result in different types of algal bloom in receiving waters. The present study suggests that effects of upgrading CAS to BNR processes on algal bloom in receiving waters, especially in estuary and ocean, should be further examined.

Plasma로 활성화된 질소 원자를 사용한 사파이어 기판 표면의 저온 질화처리의 XPS 연구 (XPS study of sapphire substrate surface nitridated by plasma activated nitrogen source)

  • 이지면;백종식;김경국;김동준;김효근;박성주
    • 한국진공학회지
    • /
    • 제7권4호
    • /
    • pp.320-327
    • /
    • 1998
  • 원격 플라즈마 화학기상증착법(Remote Plasma Enhanced-Ultrahigh Vacuum Chemical Vapor Deposition)에 의해 활성화된 질소 원자를 사용하여 사파이어 기판의 표면 을 저온에서 질화처리한 후 표면의 화학적 조성을 조사하였다. 질화처리에 의해 주로 표면 에 형성된 물질은 AIN임을 X-선 광전자 분광방법(X-ray photoelectron spectroscopy:XPS) 을 사용하여 확인하였다. 또한 플라즈마의 RF 출력, 반응 온도 및 시간에 따라서 기판의 Al 과 반응한 질소의 상대적인 양과, 표면 형태를 XPS와 AFM(atomic force microscopy)을 사 용하여 조사하였다. 플라즈마에 의해서 질소는 RF출력에 따라 증가한 후 일정하게 됨을 관 찰하였다. 그러나 질화 처리 온도와 시간의 증가에 따른 AIN의 상대적인 양은 비교적 무관 함을 관찰하였다. 또한 Ar스퍼터링을 통한 XPS의 depth profile을 관찰한 결과 질화층은 깊 이에 따라 3개의 다른 층으로 이루어져 있음을 확인하였다.

  • PDF

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Zhang, Qingtang;Li, Meng;Meng, Yan;Li, An
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.755-765
    • /
    • 2018
  • In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.

Urea를 이용한 바나듐 레독스 흐름 전지용 카본 펠트 전극 개발 (Development of Carbon Felt Electrode Using Urea for Vanadium Redox Flow Batteries)

  • 김소연;김한성
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.408-412
    • /
    • 2019
  • 본 연구에서는 urea를 이용해 질소 도핑된 카본 펠트 전극을 제조하고 이를 바나듐 레독스 흐름 전지용 전극으로 적용하였다. Urea는 암모니아 보다 취급이 용이할 뿐 아니라 고온 열분해를 통해 $NH_2$ 라디칼이 발생하여 탄소 표면에 질소 작용기를 만들고 이는 바나듐 이온의 산화/환원 반응을 향상시키는 활성점(active site)로 작용한다. Urea로 활성화된 카본 펠트 전극은 $150mA/cm^2$의 전류 밀도에서 14.9 Ah/L의 방전 용량을 보였으며 이는 산소작용기로 활성화된 카본 펠트(OGF) 및 비활성화 카본 펠트(GF)보다 각각 23% 및 187% 더 높았다. 이러한 결과는 urea로 활성화된 카본 펠트 전극이 레독스 흐름 전지용 전극 소재로 사용될 수 있는 가능성을 보여준다.

BAC Pilot Plant 를 이용한 겨울철 암모니아성 질소 제거 및 THMs 변화 (Removal of Ammonia Nitrogen and Reduction of THMs in Low Temperature by BAC Pilot Plant)

  • 강은조;서영진;이원권;전병희;이지형;윤정효;김동윤
    • 상하수도학회지
    • /
    • 제9권4호
    • /
    • pp.107-114
    • /
    • 1995
  • The raw drinking water quality is getting worse because of the winter drought and the conventional treatment system is'nt suitable to obtain the satisfied quality of water. So, the advanced water system, BAC(Biological Activated Carbon) process is said to be effective to remove dissolved organics and ammonia nitrogen. In our study, the BAC pilot plant using Nak-dong river water is tested in low temperature. Following results are found from the study. The ammonia nitrogen removal rate of BAC system using wood-based carbon (PICABIOL) was 99% in $6^{\circ}C$ temperature. Chlorine dosage in wood-based BAC effluent was reduced to 67% of that in sand filtered wate. It resulted from the removal of ammonia nitrogen. Also, THM formed by chlorine addition in wood-based BAC effluent was decreased to 65% of that in sand filtered water. In the case of dual-filter, the removal efficiency of ammonia nitrogen was increased 30% more than in conventional sand filter. According to this result, the ammonia nitrogen load to BAC system could be lessened by the use of dual-filter.

  • PDF

Therapeutic Effect of Low-Energy Nitrogen Plasma Pulses on Tinea Pedis

  • Kim, Heesu;Kim, Hyun-Jo;Cho, Sung Bin
    • Medical Lasers
    • /
    • 제8권1호
    • /
    • pp.28-31
    • /
    • 2019
  • Superficial fungal infections with dermatophytes, nondermatophyte molds, or yeasts are treated primarily with topical and/or systemic antifungal agents. Additional or alternative treatment modalities, particularly energy-delivering modalities, however, are used widely to induce fungicidal effects via selective photothermal reactions. In addition to light- or laser-based devices, plasma therapy also has antifungal properties. This report describes a Korean male patient with mycologically confirmed tinea pedis that was treated effectively with two sessions of nitrogen plasma treatment at one-week intervals using a plasma delivering system. Nitrogen plasma was prepared by loading a 0.28-ml inert nitrogen gas/pulse that was activated by a microwave generator. The other treatment settings were a nozzle diameter of 5 mm, pulse energy of 0.75 J, pulse duration of 7 msec, and two passes. One week after the first session of nitrogen plasma treatment, the patient exhibited marked reductions in scale and inflammation. One month after the final treatment, no clinical features of recurrence were found, and successive potassium hydroxide testing revealed negative results.

Selective Inhibition of Ammonia Oxidation and Nitrite Oxidation Linked to $N_2O$ Emission with Activated Sludge and Enriched Nitrifiers

  • Ali, Toor Umair;Kim, Minwook;Kim, Dong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.719-723
    • /
    • 2013
  • Nitrification in wastewater treatment emits a significant amount of nitrous oxide ($N_2O$), which is one of the major greenhouse gases. However, the actual mechanism or metabolic pathway is still largely unknown. Selective nitrification inhibitors were used to determine the nitrification steps responsible for $N_2O$ emission with activated sludge and enriched nitrifiers. Allylthiourea (86 ${\mu}M$) completely inhibited ammonia oxidation and $N_2O$ emission both in activated sludge and enriched nitrifiers. Sodium azide (24 ${\mu}M$) selectively inhibited nitrite oxidation and it led to more $N_2O$ emission than the control experiment both in activated sludge and enriched nitrifiers. The inhibition tests showed that $N_2O$ emission was mainly related to the activity of ammonia oxidizers in aerobic condition, and the inhibition of ammonia monooxygenase completely blocked $N_2O$ emission. On the other hand, $N_2O$ emission increased significantly as the nitrogen flux from nitrite to nitrate was blocked by the selective inhibition of nitrite oxidation.

Adsorption of Phenols onto Chemically-Activated Carbons Developed from Wild Cherry Stones

  • Alaya, M.N.;Youssef, A.M.;Karman, M.;Abd El-Aal, H.E.
    • Carbon letters
    • /
    • 제7권3호
    • /
    • pp.188-195
    • /
    • 2006
  • Phosphoric acid-activated carbon WP's and zinc chloride-activated carbons WZ's were developed from wild cherry stones. The textural properties of the activated carbons were determined from nitrogen adsorption data at 77 K and the chemistry of the carbon surface, i.e. the surface carbon-oxygen groups (type and amount) was determined from the base and acid neutralization capacities (Boehm method). The adsorption of phenol, p-nitrophenol, p-chlorophenol, dinitrophenol and dichlorophenol was followed at 298 K. The activated carbons obtained were characterized by high surface area and large pore volumes as well as by high surface concentration of C-O groups. The investigated carbons exhibited high adsorption capacities towards phenols with these capacities increased with the increase of molecular weight and the decrease of the solubility of phenol in water. However, no general relationship could be observed between the adsorption capacities of carbons and any of their textural parameters or their surface chemistry. This may be attributed to the many factors controlling phenol adsorption and the different types and mechanisms of adsorption involved.

  • PDF

Removal of Pesticide (Oxamyl) from Water using Activated Carbons Developed from Apricot Stones

  • El-Nabarawy, Th.;Sayed Ahmed, S.A.;Youssef, A.M.
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.299-306
    • /
    • 2007
  • Four stream- activated carbons were prepared by carbonizing apricot stones at $600^{\circ}C$ followed by gasification with steam at $950^{\circ}C$ to burn-off's=17, 32, 49 and 65%. The textural parameters of these activated carbons were determined from nitrogen adsorption results at 77 K. The total pore volume and the mean pore radius increased with the increase of % burn-off whereas the surface area increased with the increase of burn- off from 17 to 32 and further to 49%. Further increase of burn-off to 65% was associated with a considerable decrease in surface area as a result of pronounced pore widening due to pore erosion. The surface pH values of the carbons investigated range between 7.1 and 8.2. The adsorption of oxamyl onto the activated carbon followed pseudo-second order kinetics and the equilibrium adsorption isotherms fitted Langmuir adsorption model. The adsorption of oxamyl proved to be of the physical type and took place in non-micropores. The amount of oxamyl adsorbed expressed as $q_m$ depends to a large extent to the surface area located in non-micropores $S^{\propto}\;_n$, where a straight line relationship passing through the origin was obtained.