• 제목/요약/키워드: activated carbon nanotubes

검색결과 23건 처리시간 0.024초

무전해 니켈 도금된 탄소나노튜브의 전자파 차폐 특성 (Electromagnetic Interference Shielding Characteristics of Electroless Nickel Plated Carbon Nanotubes)

  • 김도영;윤국진;이영석
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.268-273
    • /
    • 2014
  • 본 연구에서는 탄소나노튜브의 전자파 차폐 성능을 향상시키고자 무전해 도금법을 이용하여 다중벽 탄소나노튜브에 니켈을 도입하였다. 니켈 도금된 다중벽 탄소나노튜브의 물리적 특성은 고분해능주사전자현미경, 열중량분석기, 표면저항측정기, 전자파 차폐능 분석기를 이용하여 분석하였다. 니켈 도금된 다중벽 탄소나노튜브의 전자파 차폐 효율은 800 MHz 영역에서 16 dB로 측정되었으며 활성화 처리된 다중벽 탄소나노튜브에 비하여 최대 1.6배 증가하였다. 또한, 평균 표면 저항 역시 $70{\Omega}/sq$로 활성화 처리된 다중벽 탄소나노튜브에 비하여 최대 56% 감소한 수치를 나타내었다. 이러한 결과는 니켈 도금 함량에 비하여 표면의 도금 형태가 전자파 차폐 효율에 더 많은 영향을 끼치기 때문인 것으로 판단된다.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제12권7호
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Comparison of the toluene adsorption capacities of variouscarbon nanostructures

  • Kim, Dong-Wun;Kim, Young-Dok;Choi, Kang-Ho;Lim, Dong-Chan;Lee, Kyu-Hwan
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.81-84
    • /
    • 2011
  • A novel experimental set-up allowing quantitative determination of the adsorption capacity of gas molecules on a surface under high-vacuum conditions is introduced. Using this system, the toluene adsorption capacities of various carbon nanostructures were determined. We found that for a give surface area, the adsorption capacities of toluene of multi-walled carbon nanotubes and nanodiamonds were higher than that of activated carbon, which is widely used as an adsorbent of volatile organic compounds. The adsorption of toluene was reversible at room temperature.

Non-Functionalized Water Soluble Carbon Nanotubes

  • ;최정일;임연민;김유나;김창준;강상수;남태현;강동우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2010
  • Most of previous methods for the dispersions of carbon nanotube were achieved by various chemical functionalizations. In this study, however, we generated highly water dispersed carbon nanofibers by altering intrinsic materials property only, such as crystallinity of outer layers of carbons, without chemical treatment. Although most of chemical functionalization requires acidic treatment and may degrade their chemical functions by interacting with other molecules, suggested strategy demonstrated a simple but chemically non-degradable carbon nanotube for the application of various medical applications, such as drug delivery system and implant coatings.Furthermore, protein adsorption was increased by the reducing surface crystalinity since outer activated surface induced more adsorption of oxygen and eventually greater protein adsorption than pristine carbon nanofibers.

  • PDF

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

수직배향 CNT의 성장에 미치는 질소의 영향 (Nitrogen Effect on Vertically Aligned CNT Growth)

  • 김태영;오규환;정민재;이승철;이광렬
    • 한국진공학회지
    • /
    • 제12권1호
    • /
    • pp.70-77
    • /
    • 2003
  • 전이금속을 촉매로 이용하여 화학기상증착법 (CVD)으로 탄소나노튜브 (CNT)를 성장시킬 때, 질소분위기가 성장을 증진시킨다는 사실은 잘 알려져 있다. 본 논문에서는 질소분위기에 의한 CNT 성장증진의 원인이 활성화 질소이며, 활성화 질소가 성장과정 중 CNT의 탄소와 결합함으로써 성장증진효과가 일어남을 보여주었다. 이 결과는 질소의 결합이 튜브상의 흑연판을 만드는데 필요한 탄성변형에너지를 낮추어 주는 역할을 한다는 CNx 박막의 이론적 계산결과와 일치한다. 따라서, 질소의 결합에 의한 CNT의 성장증진 효과는 튜브상의 흑연판 핵 생성과 CNT의 성장에 필요한 임계 에너지의 감소에 의한 것이다.

불소화 탄소나노튜브를 적용한 저에너지 소모형 축전식 탈염전극의 제조 및 특성 (Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption)

  • 유현우;강지현;박남수;김태일;김민일;이영석
    • 공업화학
    • /
    • 제27권4호
    • /
    • pp.386-390
    • /
    • 2016
  • 축전식 탈염전극의 에너지 효율을 향상시키기 위하여 탄소나노튜브를 불소화 표면처리하고 이를 도전재로 적용하였다. 탄소나노튜브는 상온에서 불소와 질소의 혼합가스로 불소화 처리되었으며, 미처리 탄소나노튜브와 불소화 탄소나노튜브를 각각 활성탄소 대비 0~0.5 wt% 첨가하여 활성탄소 기반 축전식 탈염전극을 제조하였다. 불소화 탄소나노튜브는 미처리 탄소나노튜브에 비하여 전극 슬러리 및 전극 내에서 분산성이 향상된 것을 제타 전위와 전자주사현미경을 통해 확인하였다. 불소화 탄소나노튜브를 첨가한 전극은 미처리 탄소나노튜브를 첨가한 전극보다 전체적으로 높은 탈염효율을 보였으며, 에너지 소비량 역시 감소하였다. 이는 불소화 표면처리로 인한 탄소나노튜브의 분산성 향상으로 인해 축전식 탈염 전극의 저항이 감소되었기 때문이다.

Field Emission Enhancement by Electric Field Activation in Screen-printed Carbon Nanotube Film

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • 제6권4호
    • /
    • pp.45-48
    • /
    • 2005
  • By applying a critical field treatment instead of the conventional surface treatments such as soft rubber roller, ion beam irradiation, adhesive taping, and laser irradiation, electron emission properties of screen-printed carbon nanotubes (CNTs) were enhanced and investigated based on the emission current-voltage characteristics through scanning electron microscopy. After nanotube emitters were activated at the applied electric-field of 2.5 V/um, the electron emission current density with good uniform emission sites reached the value of 2.13 mA/$cm^2$ , which is 400 times higher than that of the untreated sample, and the turn-on voltage decreased markedly from 700 to 460 V. In addition, enhancement of the alignment of CNTs to the vertical direction was observed.

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF