• Title/Summary/Keyword: activated alumina

Search Result 78, Processing Time 0.027 seconds

Mullitization of Al-Kaolin Mixture (Al-Kaolin 혼합물의 Mullite화 반응)

  • 박정현;조정식;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 1983
  • This research is aimed to synthesize the mullite by adding Al powder of $Al_2O_3$ to kaolin. Specimens fired at 1400, 1450 and 150$0^{\circ}C$ were compared in their X-ray diffraction patterns quantitative analysis of mullite formed and fine microstructures with those containing reactive $Al_2O_3$ activated $Al_2O_3$ as alumina source The experiment of Al oxdiation was also performed by measuring the weight increase of specimens. Two different shapes of mullites acicular and chunky were observed by SEM and the yield of mullites were in-creased by the order of adding activated $Al_2O_3$ reactive $Al_2O_3$ and Al powder to kaolin.

  • PDF

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator (가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.

Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

  • Sinha, Shahnawaz;Amy, Gary;Yoon, Yeo-Min;Her, Nam-Guk
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2011
  • The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated microsand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of $C_{eq}=10\;{\mu}g/L$ were 500 mg/L for AA and GFH, 520-1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60-95%.

Production of Alternative Coagulant Using Waste Activated Alumina and Evaluation of Coagulation Activity (폐촉매 부산물로부터 대체 응집제 제조 및 응집성능 평가)

  • Lee, Sangwon;Moon, Taesup;Kim, Hyosoo;Choi, Myungwon;Lee, Deasun;Park, Sangtae;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-520
    • /
    • 2014
  • In this study, the production potential of alternative coagulant ($Al_2(SO_4)_3$ solution) having the identical coagulation activity with respect to the commercial coagulant was investigated. The raw material of alternative coagulant was a spent catalyst including aluminium (waste activated alumina) generated in the manufacturing process of the polymer. The alternative coagulant was produced through a series of processes: 1) intense heat and grinding, 2) chemical polymerization and substitution with $H_2SO_4$ solution, 3) dissolution and dilution and 4) settling and separation. To determine the optimal operating conditions in the lab-scale autoclave and dissolver, the content of $Al_2O_3$ in alternative coagulant was analyzed according to changes of the purity of sulfuric acid, reaction temperature, injection ratio of sulfuric acid and water in the dissolver. The results showed that the alternative coagulant having the $Al_2O_3$ content of 7~8% was produced under the optimal conditions such as $H_2SO_4$ purity of 50%, reaction temperature of $120^{\circ}C$, injection ratio of $H_2SO_4$ of 5 times and injection ratio of water of 2.3 times in dissolver. In order to evaluate the coagulation activity of the alternative coagulant, the Jar-test was conducted to the effluent in aerobic reactor. As a result, in both cases of Al/P mole of 1.5 and 2.0, the coagulation activity of the alternative coagulant was higher than that of the existing commercial coagulant. When the production costs were compared between the alternative and commercial coagulant through economic analysis, the production cost reduction of about 50% was available in the case of the alternative coagulant. In addition, it was identified that the alternative coagulant could be applied at field wastewater treatment plant without environmental problem through ecological toxicity testing.

A Comparision Study of LDPE Pyrolysis over Resin Additives and Inorganic Compounds of Silica Alumina Type (수지첨가제와 실리카알루미나 계열 무기물이 LDPE 수지의 열분해에 미치는 영향 비교 연구)

  • Bak, Young-Cheol;Choi, Joo-Hong;Kim, Nam-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.596-602
    • /
    • 2006
  • The effects of resin additives and inorganic compounds addition on the thermal decomposition of low density polyethylene(LDPE) resin have been studied in a thermal analyzer(TGA, DSC) and a small batch reactor. The silica-alumina type compounds tested were kaolinite, bentonite, perlite, diatomaceous earth, activated clay and clay. The resin additives were antiforgging-agent and longevity-agent. As the results of TGA experiments, addition of antifogging-agent, longevity-agent and clay increased the temperature of the maximum reaction rate($T_{max}$). The silica-alumina type inorganic materials increased the pyrolysis reraction rate in the order of activated clay, diatomaceous earth, bentonite, perlites, and kaolinite. In the DSC experiments, addition of antifogging-agent and clay decreased the heat of fusion and the heat of pyrolysis reaction. Bentonite decreased 20% of the heat of fusion and 25% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of clay retarded the initial producing rate of fuel oil, but increased the yield of fuel oil. Addition of bentonite increased the yield of fuel oil from LDPE resin. Mixing of antifogging-agent and longevity-agent produced the fuel oil having lower carbon number. The amounts of the carbon number below 12 in fuel oil decreased with adding the clay. That below 23 in fuel oil increased with mixing of bentonite, perlite, kaolinite, and activated clay. But the mixing of diatomaceous earth did not affect the carbon contents of fuel oil from pure LDPE resin. In the silica-alumina type inorganic material used in this experiments, bentonite was the most effective from the pyrolysis heat, yields, and the characteristics of fuel oil.

Pore and Efflorescence Characteristics of Alkali Activated Slag-Red Mud Cement Mortar depending on Red Mud Content (레드머드 대체율에 따른 알칼리활성화 슬래그-레드머드 시멘트 모르타르의 기공 및 백화특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.261-268
    • /
    • 2017
  • Red mud is an inorganic by-product obtained from the mineral processing of alumina from Bauxite ores. A highly alkali inorganic waste product with a pH level over 11, red mud in its original state negatively impacts the ecosystem, so appropriate treatment is necessary. The development of alkali activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. However, Alkali-activated binders that use sodium activators have been reported to be more vulnerable to efflorescence. Therefore, in this study, the compressive strength, pore characteristics, water absorption, elution characteristics, and efflorescence properties of alkali-activated slag cement mortar were assessed according to their red mud substitution ratio.

Characteristics of Soil Pavement by Red Mud Content and Binder Type (레드머드 대체율에 따른 결합재별 흙포장재의 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Jae-Hwan;Kim, Byeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. The development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, water absorption and efflorescence of alkali-activated slag-red mud soil pavement according to binder type. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the redmud content increased.

Development of Anti-red Tide Material by Activating Red-mud (적토의 활성화를 통한 적조구제물질 개발에 대한 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.267-276
    • /
    • 2005
  • The study is to determine the feasibility of activated red mud as an anti-red tide material. The red mud, a byproduct of Bayer process for the production of alumina from bauxite, contained hematite, boehmite, calcite, sodalite, quartz, zircon, anatase and an unknown phase. In the adsorption study of the red mud, its adsorption efficiencies for heavy elements were close to $100\%$ except $92\%$ In As. These results seem to be attributed by the high adsorption ability of iron oxides for heavy elements. As a result of leaching tests with the red mud at various pHs (pH $1\∼13$), the high leaching efficiencies for As, Cu and Zn at low pHs (at acidic condition) were obtained. It indicated that removal efficiency of heavy elements could be excellent in acidic treatment of red mud. The activated red mud, red mud reacted with acid, contained hematite, boehmite and so on, and desorption of heavy metals from the activated red mud increased with increasing temperature. The grain of the activated red mud was tens nm in size. The removal efficiency for 5 types of plankton was generally in inverse proportion to pH, especially to final pH. Of five plankton types, Prorocentrum minimum and Alexandrium tamarense promptly were removed more than $90\%$ as soon as the activated red mud was sprayed and $100\%$ after 30 minutes. These results indicated that the activated red mud seems to be a promising anti-red tide material.

Effects of Alkali-Activated Soil Stabilizer Binder Based on Recycling BP By-Products on Soil Improvement (BP부산물을 재활용한 알칼리활성화 지반개량재의 지반개량효과에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.158-165
    • /
    • 2014
  • The enormous quantity of 'Bayer-Process by-products' (BP by-products) discharged by industries producing alumina from bauxite represents an environmental and economical problem. As it is mainly composed of $Fe_2O_3$, $Al_2O_3$, $SiO_2$, CaO and $Na_2O$, it is thought that using BP by-products as a construction material is an effective way to consume such a large quantity of alkaline waste. In this study, This study evaluates the effect of alkali-activated binder based on recycling BP by-products on soil improvement through the evaluation of slope stability and seepage flow numerical analysis. The results of analysis of ground slope safety at dry season and wet season meet standard (Ministry of Land, Infrastructure and Transport, 2006) Especially, when wet season, the ground used soil improving material meet standard, while the ground used soil-nailing method doesn't. Also, permeability coefficient of improved soil is smaller than that of natural soil and saturation depth of reinforced ground surface with improve soil is lower than that of natural soil.

Nucleation of CVD Diamond on Various Substrate Materials

  • Fukunaga, O.;Qiao, Xin;Ma, Yuefei;Shinoda, N.;Yui, K.;Hirai, H.;Tsurumi, T.;Ohashi, N.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.184-187
    • /
    • 1996
  • Diamod nucleation by mw assisted CVD was examined various conditions namely, (1) diamond nucleation on variour substrate materials, such as Si, cubic BN, pyrolytic BN and AIN, (2) AST(Activated species transport) method which promote nucleation of diamond on single crystal and polycrystalline alumina substrate was developed. (3) Effect of bias enhancement of nucleation on single crystalline Si was examined, and finally (4) DST (Double step treatment) method was developed to enhance diamond nucleation on Ni. In this method, we separated carbon diffusing process into Ni, carbon precipitating process from the inside of Ni and diamond precipitation process.

  • PDF