• Title/Summary/Keyword: action properties

Search Result 780, Processing Time 0.035 seconds

Bioactive Molecules Produced by Probiotics to Control Enteric Pathogens (프로바이오틱스가 생산하는 생리활성 물질의 장내 유해균 억제 효과)

  • Lim, Kwang-Sei;Griffiths, Mansel W.;Park, Dong June;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.141-145
    • /
    • 2014
  • There is a burgeoning number of products on the market that contain probiotics, but do they do you any good? What exactly are probiotics? They have been defined as living organisms that, when ingested in sufficient quantities, provide health benefits beyond basic nutrition. They are often referred to as "friendly bacteria" or "good bacteria." Probiotics have been claimed, amongst other things, to (i) reduce the incidence of colon cancer and other diseases of the colon, such as IBS, (ii) stimulate the immune system, (iii) have anti-hypertensive and anti-cholesterolemic properties, (iv) mitigate against the effect of antibiotics on the intestinal microbiota, and (v) protect against gastrointestinal infections. However, the scientific basis for many of these claims is not well-established. Indeed, the European Food Safety Authority has denied the use of several health claims associated with probiotics, particularly those related to mitigation of diarrhea following consumption of antibiotics. Thus, there is a need for research on the mechanisms of action of probiotics. We have been mainly interested in the use of probiotics to control enteric infections. There are several possible modes of action to explain how probiotics may protect the host from enteric pathogens, including competitive exclusion and immunomodulation. We have shown that probiotics produce bioactive molecules that interfere with bacterial cell-cell communication (also called quorum sensing), and this results in a down-regulation of virulence genes that are responsible for attachment of the pathogen to the gastrointestinal epithelium. These bioactive molecules act on a variety of bacteria, including enterohemorrhagic and enterotoxigenic Escherichia coli, Salmonella, Clostridium difficile and Clostridium perfringens, and there is evidence that they can inhibit the formation of biofilms by Listeria monocytogenes. These bioactive molecules, which are peptidic in nature, can exert their effects not only in vitro but also in vivo, and we have shown that they mitigate against E. coli O157:H7 and Salmonella in mice and Salmonella and E. coli K88 infections in pigs. They can be delivered in foods such as yoghurt and maintain their activity.

  • PDF

A1E Induces Apoptosis via Targeting HPV E6/E7 Oncogenes and Intrinsic Pathways in Cervical Cancer Cells

  • Ham, Sun Young;Bak, Ye Sol;Kwon, Tae Ho;Kang, Jeong Woo;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yang, Young;Jung, Seung Hyun;Yoon, Do Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • A1E is an extract from traditional Asian medicinal plants that has therapeutic activities against cancers, metabolic disease, and other intractable conditions. However, its mechanism of action on cervical cancer has not been studied. In order to ascertain if A1E would have pronounced anti-cervical cancer effect, cervical cancer cells were incubated with A1E and apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blotting, Reverse-transcription polymerase chain reaction, and measurement of mitochondrial membrane potential. Expression of human papiloma virus E6 and E7 oncogenes was down-regulated in A1E-treated cervical cancer cells, while p53 and retinoblastoma protein levels were enhanced. A1E also perturbed cell cycle progression at sub-G1 and altered cell cycle regulatory factors in SiHa cervical cancer cells. A1E activated apoptotic intrinsic pathway markers such as caspase-9, caspase-3 and poly ADP-ribose polymerase, and down-regulated expression of Bcl-2 and Bcl-xl. A1E induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited phosphatidylinositol 3-kinase (PI3K)/Akt, key factors involved in cell survival signaling. Taken all these results, A1E induced apoptosis via activation of the intrinsic pathway and inhibition of the PI3K/Akt survival-signaling pathway in SiHa cervical cancer cells. In conclusion, A1E exerts anti-proliferative action growth inhibition on cervical cancer cells through apoptosis which demonstrates its anti-cervical cancer properties.

Systemic Analysis of Antibacterial and Pharmacological Functions of Anisi Stellati Fructus (대회향의 시스템 약리학적 분석과 항균작용)

  • Han, Jeong A;Choo, Ji Eun;Shon, Jee Won;Kim, Youn Sook;Suh, Su Yeon;An, Won Gun
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • The purpose of this study was to acquire the active compounds of Anisi stellati fructus (ASF) and to analyze the genes and diseases it targets, focusing on its antibacterial effects using a system pharmacological analysis approach. Active compounds of ASF were obtained through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. This contains the pharmacokinetic properties of active compounds and related drug-target-disease networks, which is a breakthrough in silico approach possible at the network level. Gene information of targets was gathered from the UnitProt Database, and gene ontology analysis was performed using the David 6.8 Gene Functional Classification Tool. A total of 201 target genes were collected, which corresponded to the nine screened active compounds, and 47 genes were found to act on biological processes related to antimicrobial activity. The representative active compounds involved in antibacterial action were luteolin, kaempferol, and quercetin. Among their targets, Chemokine ligand2, Interleukin-10, Interleukin-6, and Tumor Necrosis Factor were associated with more than three antimicrobial biological processes. This study has provided accurate evidence while saving time and effort to select future laboratory research materials. The data obtained has provided important data for infection prevention and treatment strategies.

Physical Properties Related to Metamorphic Grade of the Hornfels Exposed Around Mt. Palgong (팔공산 주변 혼펠스의 변성도에 따른 물리적 특성)

  • Shin, Kuk-Jin;Oh, Je-Heon;Jung, Yong-Wook;Kim, Gyo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.25-35
    • /
    • 2014
  • The sedimentary rocks exposed around Mt. Palgong were subjected to metamorphism due to a granitic magma intrusion at late Cretaceous, and they eventually metamorphosed to hornfels by the action of both hydrothermal solution and high temperature supplied from the magma. The hornfels zone around the granite body ranges from 2.0 to 3.5 km in width but the boundary between hornfels and sedimentary rocks is not obviously defined because the metamorphic grade gradually decreases with distance from the granite boundary. A series of laboratory tests on 350 core specimens made by 35 fresh rock blocks obtained from 5 selected locations around Mt. Palgong are performed to verify the variation of physical and mechanical properties related to metamorphic grade of the rock. Water content and absorption ratio of the hornfels linearly increase with distance to the granite boundary whereas dry unit weight, p-wave velocity, point load strength, and slake durability index linearly decrease with the distance. These results imply that the metamorphic grade of the hornfels also linearly decrease with the distance to granite boundary. Empirical equations for the variation of properties with the distance to granite boundary and relationship between a property and another one are deduced by regression analyses. And a criteria for classification of hornfels exposed in the study area based on the P-wave velocity and point load strength is proposed.

A Study on the Speeding Intention and Behaviors Based on a Driver Behavior Questionnaire (DBQ를 이용한 운전자의 과속의도와 행동에 관한 연구)

  • Lee, Chang Hee;Kum, Ki Jung
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2015
  • Speeding has been the most common traffic violation which increases the risk of accidents. The purpose of this study is to examine drivers' behaviors on the speeding intention and speeding action and to identify the relationship between those causes and effects. Effects of behaviors and human characters of drivers on speeding are analyzed through a Driver Behavior Questionnaire and the cause and effect among behavior characters, speeding intention and speeding behavior are validated through the structural equation model. In order to validate the hypothesis of the study, a path analysis is conducted through structural equation model. As the result, Driver Behavior Questionnaire property that influences the speeding is revealed to be the violation while Driver Behavior Questionnaire properties that influences the speeding behavior are lapse, mistake, and violation. And the speeding intention influences the speeding behavior. The study results are compared with previous studies to reveal that Driver Behavior Questionnaire properties influencing the speeding behavior are in the order of violation, mistake and lapse. Three properties of Driver Behavior Questionnaire, lapse, mistake and violation, are behavior scales in agreement with previous studies. The results of this study based on a Driver Behavior Questionnaire are expected to be utilized as a way to predict and validate driving behaviors.

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.

Weatherability of Epoxy Cement Mortars without Hardener (경화제를 첨가하지 않은 에폭시 시멘트 모르타르의 내후성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.801-809
    • /
    • 2006
  • Epoxy resin has widely been used as adhesives and corrosion-resistant paints in the construction industry for many years, since it has desirable properties such as high adhesion and chemical resistance. Until now, in the production of conventional epoxy cement mortars, the use of any hardener has been considered indispensable for the hardening of the epoxy resin. However we have noticed the fact that even without any hardener, the hardening process of the epoxy resin can proceed by the action of hydroxides in cement mortars. As a result the disadvantages of the two-component mixing of the epoxy resin and hardener have been overcome. The purpose of this study is to evaluate the mechanical properties and durability of epoxy cement mortar without a hardener exposed at indoor and outdoor for one year. The epoxy cement mortars without and with a hardener were prepared with various polymer-cement ratios, and tested for weight change, flexural and compressive strengths, water absorption, carbonation depth and pore size distribution. Especially, the basic properties of the epoxy cement mortars without hardener are discussed in comparison with ones with the hardener. From the test results, it is concluded thai the epoxy cement mortars without a hardener exposed at indoor and outdoor for one year have higher strength and better durability than ones with the hardener within the polymer-cement ratios of 10 to 20%.

Novel DOX-MTX Nanoparticles Improve Oral SCC Clinical Outcome by Down Regulation of Lymph Dissemination Factor VEGF-C Expression in vivo: Oral and IV Modalities

  • Abbasi, Mehran Mesgari;Monfaredan, Amir;Hamishehkar, Hamed;Seidi, Khaled;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6227-6232
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. The aim of present study was to evaluate the efficacy of novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in terms of their potential to change the VEGF-C expression profile in a rat OSCC model. Materials and Methods: 120 male rats were divided into 8 groups of 15 animals administrated with 4-nitroquinoline-1-oxide to induce OSCCs. Newly formulated doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) and free doxorubicin were IV and orally administered. Results: Results indicated that both oral and IV forms of DOX-MTX-nanoparticle complexes caused significant decrease in the mRNA level of VEGF-C compared to untreated cancerous rats (p<0.05). Surprisingly, the VEGF-C mRNA was not affected by free DOX in both IV and oral modalities (p>0.05). Furthermore, in DOX-MTX NP treated group, less tumors characterized with advanced stage and VEGF-C mRNA level paralleled with improved clinical outcome (p<0.05). In addition, compared to untreated healthy rats, the VEGF-C expression was not affected in healthy groups that were treated with IV and oral dosages of nanodrug (p>0.05). Conclusions: VEGF-C is one of the main prognosticators for lymph node metastasis in OSCC. Down-regulation of this lymph-angiogenesis promoting factor is a new feature acquired in group treated with dual action DOX-MTX-NPs. Beside the synergic apoptotic properties of concomitant use of DOX and MTX on OSCC, DOX-MTX NPs possessed anti-angiogenesis properties which was related to the improved clinical outcome in treated rats. Taking together, we conclude that our multifunctional doxorubicin-methotrexate complex exerts specific potent apoptotic and anti-angiogenesis properties that could ameliorate the clinical outcome presumably via down-regulating dissemination factor-VEGF-C expression in a rat OSCC model.

Development of Environmental Rubber Interphase Adhesive by use of Oligomer of Hydrocarbon (탄화수소계 올리고머를 이용한 환경친화적 고무계면 접착제 개발)

  • Jang, Byung-Man;Jang, Jeong-Seog;Park, Sung-Soo;Choi, Dug-Jai;Kim, Su-Kyung
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.142-150
    • /
    • 2001
  • Until now rubber industry field has used organic solvent base adhesive, there was always existed a fire risk, variety of quality and harmfulness of human body. To solve this problem we were developed a new adhesive that was maked by raw materials of hydrocarbon series which has the properties of nonvolatile and high flash point. Because of this new adhesive has the properties of nonvolatile and non-harmfulness to the human body, we expected to solve the problems of a fire hazard and the pollution of the environmental. Instead of the rubber binder that is used to a present adhesive, the new idea is adopted in a new type of adhesive. Nonvolatile solvent penetrated to the rubber surface and caused the swelling in rubber surface and as a result of this action, it has the self-adhesive power. In comparision with the present adhesive a new type of adhesive remarkably improved the maintenance time of adhesion and the durability of this adhesive showed similar aspect. Because it did not exhibit a drop of physical properties of rubber which was caused by swelling effect, we estimate that new type adhesive are very stable and not reacted to several rubber additives. While present adhesive appear the crack at cutting surface of curing rubber that caused by gas, new type adhesive not exist these crack.

  • PDF

The Study of Students' Misconception about the Properties of Gas in Secondary School (기체의 성질에 대한 중·고등 학생들의 오개념에 관한 연구)

  • Yoo, Seung A;Koo, In Sun;Kim, Bong Gon;Kang, Dae Ho
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.564-577
    • /
    • 1999
  • The purpose of this study is to help an improvement of conceptional learning about the properties of gas based on molecular kinetics for secondary school students and to help an improvement of teaching method for reducing misconceptions regarding the molecular kinetics in gas phase for teachers. The subjects of this study were l00 students of 9th grade and 150 students of 11th grade students. The results showed that students had various misconceptions about the properties of gas. The major misconceptions are as follows. First, the energy is released due to the collision of the molecules, and also the direction of action of pressure is related to the direction of gravity. Second, as molecule is heated, the size of molecule is increased, and the molecule is more active because the number of moIecules is increased. Third, the pressure is reduced because of decreasing the temperature at the higher altitude and the pressure of gas molecuIes is inversely proportional to the collision number of gas molecules. Forth, the numbers of molecules of two different molecules in two same containers differ because the size of molecules differ each other. The results suggest that these problems ought to be addressed in chemistry textbooks and in the classroom teaching of chemistry. If teachers are more aware of students' misconceptions they wilI be better able to remove them.

  • PDF