• Title/Summary/Keyword: actinides

Search Result 78, Processing Time 0.024 seconds

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.

Effect of the Crucible Cover on the Distillation of Cadmium

  • Kwon, S.W.;Jung, J.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2019.05a
    • /
    • pp.69-69
    • /
    • 2019
  • The distillation of liquid cathode is necessary to separate cadmium from the actinide elements in the pyroprocessing since the actinide deposits are dissolved or precipitated in a liquid cathode. It is very important to avoid a splattering of cadmium during evaporation due to the high vapor pressure. Several methods have been proposed to lower the splattering of cadmium during distillation. One of the important methods is an installation of crucible cover on the distillation crucible. A multi-layer porous round cover was proposed to avoid a cadmium splattering in our previous study. In this study, the effect of crucible cover on the cadmium distillation was examined to develop a splatter shield. Various surrogates were used for the actinides in the cadmium. The surrogates such as bismuth, zirconia, and tungsten don't evaporate at the operational temperature of the Cd distiller due to their low vapor pressures. The distillation experiments were carried out in a crucible equipped with cover and in a crucible without cover. About 40 grams of Cd was distilled at a reduced pressure for two hours at various temperatures. The mixture of the cadmium and the surrogate was heated at $470{\sim}620^{\circ}C$. Most of the bismuth remained in the crucible equipped with cover after distillation under $580^{\circ}C$ for two hours, whereas small amount of bismuth decreased in the crucible without cover above $580^{\circ}C$. The liquid bismuth escaped with liquid cadmium drop from the crucible without cover. It seems that the crucible cover played a role to prevent the splash of the liquid cadmium drop. The effect of the cover was not clear for the tungsten or zirconia surrogate since the surrogates remained as a solid powder at the experimental temperature. From the results of this work, it can be concluded that the crucible cover can be used to minimize the deposit loss by prevention of escape of liquid drop from the crucible during distillation of liquid cathode.

  • PDF

Reprocessing of simulated voloxidized uranium-oxide SNF in the CARBEX process

  • Boyarintsev, Alexander V.;Stepanov, Sergei I.;Kostikova, Galina V.;Zhilov, Valeriy I.;Chekmarev, Alexander M.;Tsivadze, Aslan Yu.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1799-1804
    • /
    • 2019
  • The concept of a new method, the CARBEX (CARBonate EXtraction) process, was proposed for reprocessing of spent uranium oxide fuel. The proposed process is based on use of water solutions of $Na_2CO_3$ or $(NH_4)_2CO_3$ and solvent extraction (SE) by the quaternary ammonium compounds for selective recovery and purification of U from the fission products (FPs). Applying of SE allows to reach high degree of purification of U from FPs. Carrying out the processes in poorly aggressive alkaline carbonate media leads to increasing safety of SNF's reprocessing and better selectivity of separation of lanthanides and actinides. Moreover carbonate reprocessing media allows to carry out a recycling and regeneration of reagents. We have been done laboratory scale experiments on the extraction components of simulated voloxidated spent fuel in the solutions of NaOH or $Na_2CO_3-H_2O_2$ and recovery of U from carbonate solutions by SE method using carbonate of methyltrioctylammonium in toluene. It was shown that the purification factors of U from impurities of simulated FPs reached values $10^3-10^5$. The received results support our opinion that CARBEX after the further development can become more safe, simple and profitable method of spent fuel reprocessing.

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite

  • Nandi, Chiranjit;Kaity, Santu;Jain, Dheeraj;Grover, V.;Prakash, Amrit;Behere, P.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.603-610
    • /
    • 2021
  • The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.

Recovery of Valuable Minerals from Sea Water by Membrane Separation and Adsorption Process: A Review (막 분리와 흡착 과정을 통한 해수로부터의 주요 광물 회수: 리뷰)

  • Jeon, Sungsu;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • Ever increasing global energy demand gives rise to uncontrollable environmental pollution. Demand on fossil fuel and consequent carbon emission leads to global warming and climate change. Nuclear energy is an alternative source to generate clean energy but mining of nuclear fuel is associated with harmful chemicals. Mining of valuable minerals from sea water by membrane separation process is a cost effective along with environmental friendly process. Separation and adsorption based mining of valuable minerals from sea water are another efficient process. Recovery of actinides from rare earth elements are very challenging and expensive process. Pressure driven membrane separation process is economically more viable along with environmental process. In this review membrane separation process are based on polyether sulfone, polyamide, polyimide, polyamidoxine and hybrid membranes. In case of adsorption process, mainly amidoxime kind of adsorbent are discussed.

Sorption Behavior of $^{241}Am,\;^{152}Eu,\;^{160}Tb\;and\;^{60}Co$ in the Geological Materials: Eu as an Optimum Analogue for Fate and Transport of Am Behavior in Subsurface Environment (지질매체내에서의 $^{241}Am,\;^{152}Eu,\;^{160}Tb,\;^{60}Co$의 흡착특성비교: 지표지질내에서의 Am의 거동특성을 위한 최적 유사체로서의 Eu)

  • Lee, Seung-Gu;Lee, Kil-Yong;Cho, Soo-Young;Yoon, Yoon-Yeol;Kim, Yong-Je
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.361-374
    • /
    • 2007
  • Rare earth elements(REEs) have been used as an useful tool in understanding the various geological processes such as evolution and differentiation in the crust. The REEs also have been used as an analog of actinides for radioactive wastes at the water-rock interactions. Using physicochemical properties of the REEs and actinides, we have shown that Eu is an optimum analogue for understanding the behavior of Am in subsurface environments. Factors affecting sorption behavior of radioactive nuclides in groundwater were investigated by batch experiments. Four nuclides such as $^{241}Am,\;^{152}Eu,\;^{160}Tb\;and\;^{60}Co$ were selected to test our hypothesis, and $^{160}Tb$ and $^{60}Co$ were specifically used to compare to the sorption behavior between $^{241}Am-^{152}Eu$ and other radioactive nuclides. Four different rock samples and one groundwater were used in the batch experiments where solution pH for all experiments was fixed at 5.5. Our results demonstrate that $^{241}Am,\;^{152}Eu,\;and\;^{160}Tb$ show similar sorption behavior whereas $^{60}Co$ is different in sorption behavior at the mineral-water interface, suggesting that the sorption behavior of $^{60}Co$ is affected by different rock types. Our results also show that 1) Eu in REEs is optimum analogue of fate and transport of Am in subsurface environments, and 2) mineral compositions such as $SiO_2,\;TiO_2,\;P_2O_5$ and distribution of REEs such as Eu anomaly play key roles in affecting sorption behavior of radioactive nuclides even though physicochemical properties of geological materials such as specific surface area and cation exchange capacity can not be ruled out.

Electrodeposition of $^{237}Np$ for Alpha Spectrometry and Application to Spent Nuclear Fuel Samples (알파분광분석법에 의한 $^{237}Np$ 정량 및 사용후핵연료 시료에의 적용)

  • Joe Kih-Soo;Kim Jung-Suck;Han Sun-Ho;Park Yeong-Jai;Kim Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2006
  • Alpha spectrometry was studied for the determination of $^{237}Np$ in spent nuclear fuel samples. The optimum condition for the electrodeposition of $^{237}Np$ was obtained as follows : for $1{\sim}1.5$ hour of deposition time, at the current intensity of $1.2{\sim}1.5$ A and at sodium sulfate electrolyte without organic additive. The deposition yield and its reproducibility on $^{237}Np$ was decreased as the amount of $^{237}Np$ decreased from 4.16 Bq down to 0.0264 Bq(1ng). The recovery yield of $^{237}Np$ determined by alpha spectrometry after separation in synthetic solution was $98.8{\pm}5.1%$(n=4). The contents of $^{237}Np$ in spent nuclear fuel samples were determined and the result showed an agreement within 10% of a difference between the measurement and the calculation.

  • PDF

A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior (우라늄-카드뮴 합금의 제조 및 증류거동에 대한 연구)

  • Kim, Ji-Yong;Ahn, Do-Hee;Kim, Kwang-Rag;Paek, Seung-Woo;Kim, Si-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.261-267
    • /
    • 2010
  • The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is "electrowinning" which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to $40.8g/cm^2/h$ within a temperature range of 773 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller.

Separation of Actinides and Lanthanides by DEHPA Extractant(II) (DEHPA 추출제에 의한 악티늄족원소와 란탄족원소의 상호분리연구(II))

  • Yang, H.B.;Lee, E.H.;Lim, J.K.;Yoo, J.H.;Park, H.S.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.153-161
    • /
    • 1996
  • Several main nuclides($^{241}Am$, $^{152}Eu$ and $^{237}Np$) in radioactive waste solution were selected and examined to mutual separation with di-(2-ethylhexyl) phosphoric acid by solvent extraction technique. $^{237}Np$ was extracted more than 99.9% adding the $H_2O_2$ that was a good reductant for the oxidation state control of $^{237}Np$. $^{241}Am$, $^{152}Eu$ and $^{237}Np$ could be fairly well separated one another during the different sequence stripping stages, but about 7~9.6% of the other nuclides were still remained for the $^{241}Am$ stripping solution. This result shows that the product of $^{152}Eu$ and $^{237}Np$ was good, but $^{241}Am$ may be needed to further purification process. It was also discussed on the cause of the third phase formation phenomenon that was found in the solvent regeneration.

  • PDF