• Title/Summary/Keyword: acrylic fiber

Search Result 126, Processing Time 0.024 seconds

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

STRENGTH OF GLASS FIBER REINFORCED PMMA RESIN AND SURFACE ROUGHNESS CHANGE AFTER ABRASION TEST

  • Lee, Sang-Il;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo;Yun, Suk-Dae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.310-320
    • /
    • 2007
  • Statement of the problem. The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured acrylic resin using glass fibers, have been suggested over the years. But problems such as poor workability, rough surface, poor adhesion of glass fiber resin complex are not solved yet. Purpose. The aim of the present study was to investigate the effect of short glass fibers on the transverse strength of heat-polymerized denture base acrylic resin and roughness of resin complex after abrasion test. Material and methods. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with acrylic resin powder in conventional mixer with a non-cutting blade, to produce the glass fiber($10{\mu}m$ diameter, 3mm length, silane treated) resin composite. Glass fibers were incorporated at 0%, 3%, 6% and 9% by weight. Transverse strength were measured. After abrasion test, surface roughness was evaluated and scanning electron microscope view was taken for clinical application. Results. 1. 6% and 9% incorporation of 3mm glass fibers in the acrylic resin enhanced the transverse strength of the test specimens(p<0.05). 2. Before abrasion test, incorporation of 0%, 3%, 9% glass fiber in the resin showed no dirrerence in roughness statisticaly(p>0.05). 3. After abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically(p>0.05). 4. In SEM, surface roughness increased as the percentage of the fibers increased. 5. In the areas where glass fiber bunchings are formated, a remarkably high roughness was noticed. Conclusion. 6% and 9% addition of silane-treated short glass fibers into denture base acrylic resin increased transverse strength significantly. Before and after abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically.

Electro-spun Antimicrobial Acrylic Fiber

  • Lee, Jae-Woong;Ren, Xue-Hong;Broughton, R.M.;Liang, Jie;Worley, S.D.;Huang, T.S.
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.44-49
    • /
    • 2007
  • Antimicrobial fibers were prepared by an electro-spinning method. Polystyrene hydantoin(PSH) was employed as an antimicrobial precursor to produce an electro-spun antimicrobial acrylic fiber. Increasing the surface area of hydrophobic antimicrobial-fibers provides enhanced antimicrobial efficacy. The biocidal activity of electro-spun acrylic fibers could be rendered through chlorine bleach treatment, and the antimicrobial effectiveness against gram-Positive and gram-negative bacteria was investigated. In addition, scanning electron microscopy(SEM) demonstrated the feature of the electro-spun fibers.

Studies on Amidoximated Acrylic Fiber(I) -Amidoximation and Adsorption Capacity to Transition Metals - (아크릴 섬유의 아미도옥심화에 관한 연구(I) -아미도옥심 반응과 천이금속의 흡착능-)

  • Chin, Young Gil;Kim, Kyu Beom
    • Textile Coloration and Finishing
    • /
    • v.8 no.6
    • /
    • pp.40-46
    • /
    • 1996
  • In order to investigate a practical application of fibrous absorbents to transition metals such as copper, nickel, cobalt, chrome, and iron, amidoximated fiber as a particular class of solid chelate agents were prepared from acrylic fibers treatment with hydroxylamine. The adsorption mechanisms of metal ions onto amidoximated acrylic fibers and their complexes were studied. Amidoximation of acrylic fiber with hydroxylamine is found to be first-order reaction, followed by the disappearance of infrared adsorption peaks due to nitrile groups of acrylic fibers. The uptake of metal ions onto amidoximated acrylic fiber is increased with temperature raising and the adsorption is also depended on pH of the soiutions. About 70% of metal ions can be recovered from aqueous solutions of Ni(II), Co(II), Cr(III), and Fe(II) on the concentration below 5x 10$^$^{-4}$ in the range of pH 2.1~10.0. Transition metals are adsorbed to form complex with amidoxime group by the ligand sites such as C=N, NH, NO, NHOH.OH.

  • PDF

Improvement of the Advanced Treatment for Nitrogen Removal of Acrylic Fiber Wastewater (아크릴섬유 폐수의 생물학적 질소제거공정의 개선)

  • Lee, Chan-Won;Cho, In-Sung;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.439-446
    • /
    • 2006
  • The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. it was found that nitrification rate was not sufficient in the Anoxic/Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.

Preparation of Acrylic Acid-grafted Kenaf Fibers Using E-beam Irradiation and Evaluation of Permeability of Kenaf Fiber-cement Composites (전자선을 이용한 아크릴산 그라프트 케냐프 섬유의 제조 및 이를 이용한 케냐프 섬유보강 시멘트의 투수특성 평가)

  • Kim, Du Yeong;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.53-57
    • /
    • 2014
  • The kenaf is quickly developing as a renewable resource. Kenaf can be grown under a wide range of weather conditions. Modification of kenaf fiber by graft polymerization provides a significant route to alter the chemical properties, including surface hydrophilicity or hydrophobicity. In this study, kenaf fiber surfaces were grafted with acrylic acid as a hydrophilic group using electron beam irradiation. The grafting rate increased with an increase in grafting time. The FT-IR results confirmed that acrylic acid was successfully grafted onto the kenaf fibers. The wettability of the kenaf fiber was increased, accompanied by acylic acid grafting on the fiber surface. According to the permeability test result, it was found that acrylic acid grafted kenaf fiber reinforced cement composite was more reduced than non-grafted kenaf fiber reinforced cement composite.

A Study on the Modification of Acrylic Fiber by Hexamethylenediamine (Hexamethylenediamine에 의한 Acrylic 섬유의 개질에 관한 연구)

  • Sung Su Kwang;Bae Jeong Sook;Huh Man Woo;Cho Hwan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.4 no.1_2
    • /
    • pp.19-24
    • /
    • 1980
  • To study possible modification of acrylic fiber, Cashmilon SF was treated with hexamethylene-diamine(HMDA) in toluene at elevated temperature. Physico-chemical properties of treated fiber were tested by dyeing with benzyl scarlet BS and by measuring tensile strength of the fiber. Following results were obtained from this experiment. 1) HMDA and fiber were condensed at above $120^{\circ}C$. 2) Treated samples could be dyed with acidic dyes. 3) Treatment with HMDA decreased tensile strength of the fiber. This study therefore suggests that HMDA can be used to modify the properties of the fiber.

  • PDF

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

Fabrication and Characterization 1×7 Plastic Optical Fiber Coupler Using Tapered Acrylic Cylinder (가늘어진 아크릴 원통을 이용한 1×7 커플러 제작 및 특성 측정)

  • Min, Seong-Hwan;Kim, Kwang-Taek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • In this paper, we proposed and demonstrated $1{\times}7$ type plastic optical fiber(POF) coupler incorporating a tapered acrylic cylinder which works optical combining and dividing region. A fabricated POF coupler showd 2.27~3.31 dB of insertion loss for optical combining and 8.67~11.27dB of insertion loss for optical spitting.

Effect of Graft Copolymerization Conditions on Grafting Yield of AA and MA onto Polyester Fiber

  • Park, Myung-Ja
    • The International Journal of Costume Culture
    • /
    • v.6 no.2
    • /
    • pp.134-146
    • /
    • 2003
  • Polyester of linear homopolymer poly(ethylene terephthalate)(PET) was chemically modified through the formation of branched copolymer to improve the undesirable properties of fiber. Photo-induced graft copolymerization of the acrylic monomers acrylic acid (AA) and methyl acrylate (MA) in the liquid and vapor phase, respectively, onto N,N-dimetylformamide (DMF)-pretreated PET fibers was carried out. The effect of various synthesis conditions and DMF pretreatment of the PET on the graft yield was investigated. Grafting mechanism was analysed. The grafting was promoted by increasing DMF pretreatment temperature and amount of DMF retention in the fiber. The increasing biacetyl and monomer flow time, and irradiation time enhanced the grafting up to a certain amount and thereafter it decreased.

  • PDF