• Title/Summary/Keyword: acrylamide

Search Result 321, Processing Time 0.035 seconds

Differential gene expression pattern in brains of acrylamide-administered mice

  • Han, Chang-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.99-104
    • /
    • 2012
  • The present study was performed to evaluate the relationship between the neurotoxicity of acrylamide and the differential gene expression pattern in mice. Both locomotor test and rota-rod test showed that the group treated with higher than 30 mg/kg/day of acrylamide caused impaired motor activity in mice. Based on cDNA microarray analysis of mouse brain, myelin basic protein gene, kinesin family member 5B gene, and fibroblast growth factor (FGF) 1 and its receptor genes were down-regulated by acrylamide. The genes are known to be essential for neurofilament synthesis, axonal transport, and neuroprotection, respectively. Interestingly, both FGF 1 and its receptor genes were down-regulated. Genes involved in nucleic acid binding such as AU RNA binding protein/enoyl-coA hydratase, translation initiation factor (TIF) 2 alpha kinase 4, activating transcription factor 2, and U2AF 1 related sequence 1 genes were down-regulated. More interesting finding was that genes of both catalytic and regulatory subunit of protein phosphatases which are important for signal transduction pathways were down-regulated. Here, we propose that acrylamide induces neurotoxicity by regulation of genes associated with neurofilament synthesis, axonal transport, neuro-protection, and signal transduction pathways.

Determination of Heterocyclic Amines and Acrylamide in Agricultural Products with Liquid Chromatography-Tandem Mass Spectrometry

  • Lee, Kyung-Jun;Lee, Gae-Ho;Kim, HaeSol;Oh, Min-Seok;Chu, Seok;Hwang, In Ju;Lee, Jee-yeon;Choi, Ari;Kim, Cho-il;Park, Hyun-Mee
    • Toxicological Research
    • /
    • v.31 no.3
    • /
    • pp.255-264
    • /
    • 2015
  • Heterocyclic amines (HCAs) and acrylamide are unintended hazardous substances generated by heating or processing of foods and are known as carcinogenic and mutagenic agents by the animal experiments. A simple method was established for a rapid and accurate determination of 12 types of HCAs (IQ, MeIQ, Glu-P-1, Glu-P-2, MeIQx, Trp-P-1, Trp-P-2, PhIP, $A{\alpha}C$, $MeA{\alpha}C$, Harman and Norharman) and acrylamide in three food matrices (non-fat liquid, non-fat solid and fat solid) by isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). In every sample, a mixture of internal standards including $IQ-d_3$, $MeIQx-d_3$, $PhIP-d_3$, $Trp-P-2-^{13}C_2-^{15}N$ and $MeA{\alpha}C-d_3$ was spiked for quantification of HCAs and $^{13}C_3$-acrylamide was also spiked for the analysis of acrylamide. HCAs and acrylamide in sample were extracted with acetonitrile and water, respectively, and then two solid-phase extraction cartridges, ChemElut: HLB for HCAs and Accucat: HLB for acrylamide, were used for efficiently removing interferences such as pigment, lipid, polar, nonpolar and ionic compounds. Established method was validated in terms of recovery, accuracy, precision, limit of detection, limit of quantitation, and linearity. This method showed good precision (RSD < 20%), accuracy (71.8~119.1%) and recovery (66.0~118.9%). The detection limits were < 3.1 ng/g for all analytes. The correlation coefficients for all the HCAs and acrylamide were > 0.995, showing excellent linearity. These methods for the detection of HCAs and acrylamide by LC-MS/MS were applied to real samples and were successfully used for quantitative monitoring in the total diet study and this can be applied to risk assessment in various food matrices.

Factors Influencing the Acrylamide Content of Fried Potato Products

  • Jin, Yong-Ik;Park, Kyeong-Hun;Chang, Dong-Chil;Cho, Ji-Hong;Cho, Kwang-Su;Im, Ju-Sung;Hong, Su-Young;Kim, Su-Jeong;Nam, Jung-Hwan;Sohn, Hwang-Bae;Yu, Hong-Seob;Chung, Ill-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.247-255
    • /
    • 2016
  • BACKGROUND: Acrylamide (CAS No. 79-06-1) is known to be a carcinogenic compound, and is classified as a Group 2A compound by the International Agency for Research on Cancer (IARC, 1994). Acrylamide can be generated during the browning process via the non-enzymatic Maillard reaction of carbohydrates such as reducing sugars and of amino acids such as asparagine, both of which occur at a temperature above $120^{\circ}C$. Potato tubers contain reducing sugars, and thus, this will affect the safety of processed potato products such as potato chips and French fries. In order to reduce the level of acrylamide in potato processed products, it is therefore necessary to understand factors that affect the reducing sugar content of potatoes, such as environmental factors and potato storage conditions, as well as understanding factors affecting acrylamide formation during potato processing itself. METHODS AND RESULTS: Potatoes were cultivated in eight regions of Korea; For each of these different environments, soil physico-chemical characteristics such as pH, electrical conductivity, total nitrogen, available phosphate, and exchangeable cation content were measured and correlations with potato reducing sugar content and potato chip acrylamide levels were examined. The reducing sugar content in potato during storage for three months was determined and acrylamide level in potato chip was analyzed after processing. The storage temperature levels were $4^{\circ}C$, $8^{\circ}C$, or $10^{\circ}C$, respectively. The acrylamide content of chips prepared from potatoes stored at $10^{\circ}C$ or $20^{\circ}C$ for one month was analyzed and the different frying times were 2, 3, 5, and 7 min. CONCLUSION: This study showed that monitoring and controlling the phosphate content within a potato field should be sufficient to avoid producing brown or black potato chips. For potatoes stored at low temperatures, a reconditioning period ($20^{\circ}C$ for 20 days) is required in order to reduce the levels of reducing sugars in the potato and subsequently reduce the acrylamide and improve chip coloration and appearance.

Studies on the Physiological Chemistry of the Spring Habits in Naked Barley IV. Electrophoretic Variations in Seed Proteins during Ripening (과맥의 파성에 대한 생리화학적 연구 제4보 등숙과정에 있어서의 종자단백질의 전기영동특성 변이)

  • 최선영;이강수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.55-59
    • /
    • 1982
  • With naked barley varieties which are different in their spring habits, variations in seed proteins during ripening were checked by acrylamide gel electrophoresis. In case of 7% acrylamide gel among protein bands ⅰ-band was observed only in both Sedohadaka (intermediate type) and Wanju (spring type) throughout the ripening period, and j-band was detected in all the three varieties until 33 days after heading, but not in Nonsangwa (winter type) thereafter. In case of 6M urea-7% acrylamide gel z-band was traced only in Nonsangwa, contrary to i-band, throughout the ripening period. U-band was observed in all the three varieties until 23 days after heading, but not in Nonsangwa thereafter. X-band showed opposite from u-band. Throughout the ripening period Sedohadaka was significantly more similar in the electrophoretic patterns to Wanju than to Nonsangwa.

  • PDF

Dispersion Polymerization of Acrylamide in the Media of t-Butyl Alcohol/$H_2O$ Mixtures (t-Butyl Alcohol/$H_2O$ 혼합 용매에서 아크릴아미드의 분산중합)

  • 이기창;이성은;송봉근;이동주
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.629-637
    • /
    • 2000
  • Dispersion polymerization of acrylamide in the media of t-butyl alcoho1/$H_2O$ mixtures at 30~5$0^{\circ}C$ in the presence of hydroxypropyl cellulose and ammonium persulfate as steric stabilizer and initiator, respectively, was carried out. It was studied the effects of concentrations of initiator and steric stabilizer, amount of monomer, polymerization temperature, t-butyl alcohol/$H_2O$ ratio, concentration of crosslinker, purification of monomer and nitrogen purge on the particle size of the resulting acrylamide latices and molecular weight of the latex-poly(acrylamide). In this study, poly(acrylamide) latices of 0.1~0.5 ${\mu}{\textrm}{m}$ with 470000~2080000 in (equation omitted) were prepared and the resulting PAM latices were all dissolved in water in stantly.

  • PDF

Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase

  • Tian, Yuxuan;Yu, Chen, Huimin;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpE-GroEL-GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases.

Acrylamide concentration in domestic foods (국내에서 유통된 식품의 아크릴아마이드 함량 분석)

  • Kim, Mi-Kyo;Oh, Mi-Hwa;Youn, Soo-Hyun;Kim, Cheong-Tae;Sung, Dong-Eun;Ham, Jun-Sang;Choi, Dong-Mi;Oh, Sang-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.238-246
    • /
    • 2009
  • Acrylamide in various food samples in Korea were monitored during the period beginning August 2006 through May 2007. A total of 471 food products that were purchased at local markets were categorized into 17 groups and analyzed for the acrylamide content by using an LC-MS/MS method. Food samples that were selected based on special consideration such as expert consultation, Korean food consumption data and food market shares were considered to be representative. There are very large variations in acrylamide levels within tested foods. Acrylamide content ranged from ND(not detected) to $4,002{\mu}g$/kg with all tested samples. Acrylamide levels are relatively high in 'cereal', 'coffee', 'potato snacks', 'biscuit', 'chocolate', and 'prune juice'. Acrylamide was also detected in fruits, vegetables, Korean traditional cookies which are considered as safe for acrylamide.

Analysis of Acrylamide in Processed Foods Obtained from Korean Markets

  • Kim Cheong Tae;Hwang Eun-Sun;Lee Hyong Joo
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.4
    • /
    • pp.191-198
    • /
    • 2005
  • The purpose of this study was to determine the level of acrylamide in various processed foods, some of which were chosen because they were known to contain an excessive amount of acrylamide. A total of 190 food products based on steamed rice, cereals, and potato chips were purchased from retail markets and analyzed with the LC-MS/MS method. Acrylamide was found to be widely distributed in all of the foods. The fried Potato chips contained the highest levels of acrylamide, at $470-3,572{\mu}g/kg$; these were lowered to $38-633{\mu}g/kg$ by vacuum frying. The median concentration of acrylamide was higher in snacks containing potato ($448{\mu}g/kg$) than in those with no potato ($133{\mu}g/kg$). The concentrations of acrylamide were 2-96 $\mu$g/kg in Korean staple foods, $48-61{\mu}g/kg$ in bone-extract soups, and $0-57{\mu}g/kg$ in Bulgogi sauce. These results suggest that the components of processed ffods and the processing methods are important determinants of acrylamide formation.

Preliminary Acrylamide Monitoring of Domestic Heat-Treated Food Products (국내 가열식품군의 아크릴아마이드 예비 모니터링)

  • Park, Jae-Young;Kim, Hye-Young;Lee, Jong-Ok;Chung, So-Young;So, Yu-Sub;Kim, Chang-Min;Oh, Sang-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.748-751
    • /
    • 2003
  • Acrylamide is considered as potential carcinogen and genotoxicant. Swedish National Food Administration reported that acrylamide was detected in heat treated starch rich food products. Acrylamide formation during food processing was confirmed by researchers of other countries including UK, Norway, Japan, Switzerland, and United States. It is noticed that the formation of acrylamide in potato products was greater than other food products. It may be due to high concentration of asparagine and glucose in potato products comparing to those of other food products. Interaction between asparagine and glucose during heat treatment resulted in acrylamide formation via Maillard reaction. Analytical method (LC-MS/MS) adopted by FDA was performed to monitor acrylamide concentrations in domestic food products. Acrylamide quantitation in several food categories, such as raw materials, boiled foods, fried foods, hardtacks, breads, breakfast cereals, potato chips, french fries, biscuits, and others, were carried out.