• Title/Summary/Keyword: acoustic wave devices

Search Result 84, Processing Time 0.03 seconds

Acoustic outputs from clinical extracorporeal shock wave lithotripsy devices (임상에서 사용중인 체외충격파쇄석기의 음향 출력 분포)

  • Jong Min Kim;Oh Bin Kwon;Jin Sik Cho;Sung Joung Jeon;Ki Il Nam;Sung Yong Cho;Min Joo Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.469-490
    • /
    • 2023
  • Survey was carried out on the acoustic outputs from 12 shock wave fields produced by the 10 extracorporeal shock wave lithotriptors whose technical documents are available, among the 33 devices approved by the Ministry of Food & Drug Safety (MFDS).The results show that the acoustic outputs (P+, P-, efd, and E), critical to the therapeutic efficacy and the patient safety, are largely different between the devices. The maximum values of P+, P-, efd, and E vary up to 2.08, 3.72, 3.89, and 15.98 times, respectively. The acoustic output parameters are not thoroughly provided in the technical documents, and some of data (eg. efd) are suspected to be abnormal outside usual ranges. The large device to device differences in the shock wave outputs are likely to undermine equivalence between the ESWL devices approved for the same indication. To verify the reliability of the data in the technical documents of the approved devices and to confirm if the acoustic outputs from the devices in clinical use are the same as those in their technical documents, an authorized test laboratory should be available. A postapproval monitoring led by the regulatory agency is suggested to maintain the acoustic outputs from the ESWL devices that suffer from degrading in performance due to aging.

The Theory and Application or Piezoelectric Quartz Crystal Microbalance[PZ QCM] for Biosensor (압전 수정 결정 미량 천평[PZ QCM] 바이오센서의 원리와 응용)

  • 김의락
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.79-89
    • /
    • 2003
  • This article contains an overview of acoustic wave devices, the theory and application of piezoelectric quartz crystal microbalances(PZ QCM), clinical analysis, gas phase detection, DNA biosensors, drug analysis, food microbial analysis and environmental analysis.

A Wireless Identification System Using an Efficient Antenna Based on Passive Surface Acoustic Wave(SAW) Devices

  • Chang, Ki-Hun;Lee, Woo-Sung;Yoon, Young-Joong;Kim, Jae-Kwon;Park, Joo-Yong;Burm, Jin-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • A UHF band wireless identification system based on passive surface acoustic wave(SAW) devices is presented in this paper. SAW ID tags were fabricated on Y-Z $LiNbO_3$ piezoelectric substrate with a good electro-mechanical coupling property. To reduce degradation of the antenna performance associated with the piezoelectric materials, an efficient design of the SAW RFID antenna is introduced. By measuring the parameters of the SAW ID tag, the performance of the antenna was tested by experimentation.

Velocity Change of Magneto Surface Acoustic Wave (MSAW) in (Fe1-xCox)89Zr11 Amorphous Films (II) ((Fe1-xCox)89Zr11 비정질 자성막에서의 자기표면탄성파 속도변화(II))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.279-282
    • /
    • 2002
  • The effect of field annealing on the velocity changes of magneto surface acoustic wave (MSAW) devices has been investigated for deposited $(Fe_{1-x}Co_x)_{89}Zr_{11}$ (x = 0~1.0) amorphous films. By means of two step field annealing at $195^{\circ}C$ for 10 minute in the magnetic field of 130 Oe, the MSAW device with x=0.4 film among the devices showed the superior velocity change of 0.1 %. This gigantic value was obtained in the DC bias field of 40 Oe at the exciting frequency of 8.7 MHz. It was confirmed that such behavior was due to the variation of differential permeability caused by an optimal stress within the magnetic film.

Recent Advances in Scanning Acoustic Microscopy for Adhesion Evaluation of Thin Films

  • Ju, Hyeong-Sick;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.534-549
    • /
    • 2009
  • As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.

Velocity Change of Magneto Surface Acoustic Wave (MSAW) in $({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$ Amorphous Films (I) ($({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$비정질 자성 막에서의 자기표면탄성파 속도변화 (I))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.477-482
    • /
    • 2001
  • The velocity changes of magneto surface acoustic wave (MSAW) have been investigated in the MSAW devices composed of wedge type transducer and as-sputtered ($Fe_{1-x}$ $Co_{x}$ )$_{89}$ $Zr_{ 11}$ (x=0~1.0)amorphous films on glass substrates. The velocity changes of devices depended sensistively on exciting frequency of MSAW, applying the DC bias magnetic field. film thickness and film composition. Particularly. it was conformed that velocity changes increased with the increase of the exciting frequency of MSAW and the thickness of magnetic films. A device deposited x= 0.8 film along the MSAW propagation direction among the devices exhibited a large velocity change of 0.062% at 8.7 MHz for the applied field of 70 Oe.

  • PDF

Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices (임상에서 사용중인 탄도형 체외충격파 치료기의 음향 출력)

  • Cho, Jin Sik;Kwon, Oh Bin;Jeon, Sung Joung;Lee, Min Young;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.570-588
    • /
    • 2022
  • We scrutinized the acoustic outputs from the 70 shock wave generators of the 15 product models whose technical documents were available, among the 46 ballistic extracorporeal shock wave therapeutic devices of 11 domestic and 6 foreign manufacturers, approved by the Minster of Food & Drug Safety (Rep. Korea). We found that the acoustic Energy Flux Density (EFD), the most popular exposure parameter, was different by up to 563.64 times among shock wave generators at their minimum output settings and by up to 74.62 times at their maximum settings. In the same product model, the EFD was shown to vary depending on shock wave transmitters by up to 81.82 times at its minimum output setting and by up to 46.15 times at its maximum setting. The lowest EFD 0.013 mJ/mm2 at the maximum output settings was much lower (2.1 %) than the maximum value 0.62 mJ/mm2 at the minimum settings. The Large acoustic output differences (tens to hundreds of times)from the therapeutic devices approved for the same clinical indications imply that their therapeutic efficacy & safety may not be assured. The findings suggest the regulatory authority to revise her guideline to give clearer criteria for clinical approval and equality in performance, and recommend the authority to initiate a post-approval surveillance as well as a test in conformance between the data in technical documents and the real acoustic outputs clinically used.

Field Analysis of surface Acoustic Wave Transducers (표면파 트랜스튜서의 전자이론적 분석)

  • 강창언
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 1980
  • The transmission and reception characteristics of surface acoustic wave devices are analyzed by introducing three different types of transducers. such as single-electrode transducer. double-electrode transducer and triple-electrode transducer. Utilizing an electromagletic field theory technique, the output signal has been derived theoretically. The basic analysis used here can be extended for other configurations. The surface acoustic devices have been shown promising as a means of improving the operation efficiency by modifying the Beometric configuration of transducer strips.

  • PDF

Surface Acoustic Waves Sensors for Wireless Measurement of Temperature (Surface Acoustic Wave를 이용한 무선 온도 센서 설계 및 구현)

  • Kim, Jaek-Won;Park, Joo-Yong;Kim, Kyung-Hwan;Yeo, Joon-Ho;Burm, Jin-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.469-470
    • /
    • 2006
  • Surface Acoustic Wave(SAW) devices can be used to as wireless sensor elements, called SAW transponders, for measuring shysical quantities such as temperature that do not need any power supply and may be accessed wirelessly. SAW devices were fabricated on Y-Z $LiNbO_3$ piezoelectric substrate with a good temperature coefficient property. The signal response of SAW sensor on the temperature change were compared. To measure the change of SAW velocity. Temperature changed form $20^{\circ}C$ to $400^{\circ}C$ was linearly changed, the SAW sensor is application to the temperature sensor.

  • PDF

Surface Acoustic Wave Sensor using Electroactive Paper (EAPap) (Electroactive Paper (EAPap)를 이용한 표면탄성파 센서)

  • Lee, Min-Hee;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.368-371
    • /
    • 2008
  • Cellulose based Electroactive Paper (EAPap) has been developed as a new smart material due to its advantages of piezoelectricity, large displacement, low power consumption, low cost and flexibility. EAPap can be used fur a surface acoustic wave (SAW) device using the piezoelectric property of EAPap, resulting in the cost effective and flexible SAW device. In this paper, inter digit transducer (IDT) structure using lift-off technique with a finger gap of $10{\mu}m$ was used for micro fabrication of the cellulose EAPap SAW devices. The performance of IDT patterned SAW device was characterized by a Network Analyzer. The feasibility of cellulose EAPap as a potential acoustic device was presented and explained.

  • PDF