• Title/Summary/Keyword: acoustic vibration

Search Result 1,628, Processing Time 0.029 seconds

Analysis of the Acoustic Radiation Efficiency on Multi-excitation System with Different Phase (위상차를 갖는 다중 가진 시 구조물의 방사효율 특성 해석)

  • Kang, Myunghwan;Yi, Jongju;Han, Seungjin;Bae, Sooryong;Jung, Woojin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.992-998
    • /
    • 2014
  • Acoustic radiation efficiency is one of the important factors in the prediction of underwater radiated noise of ships. A ship has much equipment to operate successful mission in a ship. Most of equipment is running simultaneously as multi-excitation and becomes the source of underwater radiated noise. In many cases of multi-excitation, phase difference between multi-excitation is not considered. Because vibration response under multi-excitation is the vector sum of each single excitation, acoustic radiation efficiency based on surface velocity field can be affected by phase of excitation. In this study, acoustic radiation efficiency of a plate on air and a stiffened cylindrical model in water under multi-excitation with phase difference is investigated.

An Empirical Acoustic Impedance Model for the Design of Acoustic Resonator with Extended Neck at a High Pressure Environment (높은 음압에서의 내부 확장관형 음향 공명기의 설계를 위한 실험적 음향 임피던스 모델)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1199-1205
    • /
    • 2012
  • An empirical acoustic impedance model of acoustic resonators with extended neck at a high sound pressure environment is proposed. The acoustic resonator with extended neck into its cavity is appropriate for the launcher fairing application because the length of neck does not increase the total height of the resonator. This enables one to design slim and light acoustic resonators for launch vehicles. The suggested acoustic impedance model considers the incident pressure and geometric variables(the neck length, the perforation ratio and the hole diameter) in terms of non-dimensional variables. Several acoustic resonators with extended neck are manufactured and their wall impedances are measured according to the pre-defined incident pressure levels. Effects of non-dimensional variables on the non-linear acoustic impedance are investigated so that a simple non-linear impedance model for the launcher fairing application can be proposed. It is demonstrated that the estimated acoustic resistance and acoustic length correction show reasonable agreement with the measured ones within the range of design parameters for launcher fairings.

Study on the Acoustic Modes of a Short, Thick, Asymmetric Cylinder (비대칭 특성을 가진 짧은 후판 실린더의 음향 방사 모드에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.234-242
    • /
    • 2017
  • This study investigates vibro-acoustic characteristics of a short, thick cylinder containing a slot given a pined-free boundaries. Using the finite element analysis results, structural modes of the asymmetric cylinder (with a slot) are expressed as the linear combinations of modes of the symmetric cylinder made of same material with identical geometry except the slot. Based on synthesized modal vibrations, acoustic modes of the asymmetric cylinder are obtained with two approaches, i.e., Rayleigh integral calculation and modal expansion of the acoustic modes of the symmetric cylinder. Also, acoustic powers, max. sound pressure and directivity pattern are obtained from acoustic modes and verified with the boundary element analyses. Based on these results, the accuracy of proposed approaches in calculating the vibro-acoustic properties of a short, thick, asymmetric cylinder has been confirmed. The procedure can be applied to the similar cylinders with other boundaries or asymmetric properties. Also, attenuation of vibration and/or sound radiation of the cylinder type practical components can be studied using these approaches.

Development of a Silencer for an Acoustic Enclosure of a Large Transformer (대형 변압기의 밀폐장치용 소음기 개발)

  • Lee, Jun-Shin;Lee, Wook-Ryun;Lee, Tae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.786-789
    • /
    • 2005
  • An acoustic total or partial enclosure is widely used to reduce the sound pressure level propagating from a noise source. However, the performance of the acoustic enclosure is decreased by its inherent limitations such as temperature rise or acoustic pressure build up inside the enclosed acoustic field. In general, a silencer is installed to overcome these limitations, for large amount of air can be exchanged through the silencers. In this reason, a parallel baffle type duct silencer with acoustic resonators is studied to reduce the transmitted noise from a transformer. In this silencer, the high frequency components of the transmitted noise over 360Hz are effectively absorbed by the parallel baffles and the other ones, 120 and 240 Hz, are reduced due to the presence of Helmholtz resonators. Large sound attenuation is achieved by applying the sound resonating barrier to the large transformers in a substation.

  • PDF

A Study on the Effect of Acoustic Properties on the Absorption Characteristics of Polyester Fiber Materials (폴리에스터 흡음재 흡음특성에의 음향 물성치 영향평가 연구)

  • Park, Hern-Jin;Jeong, Myong-Guk;Shim, Sung-Young;Lee, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.885-891
    • /
    • 2003
  • Effects of each acoustic property on absorption characteristics of polyester fiber materials has been studied in this paper. It would be impossible for us to measure effects of each acoustic property by experimental method since we cannot make sound-absorbing materials in which only one of the properties is changed. We have adopted a numerical prediction method to carry out parameter studies for each acoustic property. And to get a general behavior of acoustic performance of the materials, the numerical simulation has been repeated to several cases of different bulk density. Finally we have obtained frequency-dependent control factors in the absorption performance which gives us design capability of acoustic absorbing materials.

  • PDF

High Intensity Acoustic Test for KOMPSAT-2 STM (다목적 실용위성 2호 구조-열모델의 음향 환경 시험)

  • 김홍배;문상무;김영기;우성현;이상설;김성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.862-866
    • /
    • 2002
  • High intensity vibro-acoustic testing is the appropriate method for flight qualification testing of space flight vehicle which must ensure the acoustic environment of launch. To qualify vibro-acoustic environment during its flight, High Intensity Acoustic Test was performed for KOMPSAT-2(Korea Multi-Purpose SATellite) STM(Structural Thermal Model). This paper presents the detailed description on the high intensity acoustic test for KOMPSAT-2. Additionally the test results was compared with the analysis ones, which were estimated with 3-D SEA(Statistical Energy Analysis) model.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Modal acoustic power of broadband noise by interaction of a cascade of flat-plate airfoils with inflow turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1467-1475
    • /
    • 2007
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

  • PDF

Characteristics of Modal Acoustic Power of Broadband Noise by Interaction of a Cascade of Flat-plate Airfoils with Inflow Turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워 특성)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

Reduction of Flow Induced Vibration in the Heat Exchanger of Thermal Power Plant (발전소 열교환기에서의 유동유발 진동저감)

  • Jang, Han-Kee;Kim, Seung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.633-638
    • /
    • 2000
  • This paper reports an example of flow-induced vibration in a very large plant and the whole procedure of reducing the vibration. During the operation of flue gas desurfurization unit of the thermal power plant, serious vibration occurred at all around the unit. The worst vibration was recorded on the heat exchanger surface, which weighed 180 tones, as 17.8 m/$s^2$ in vibration amplitude at 34Hz. To identify the vibration, frequency analysis on the response vibration, the expected excitation force and the system resonance was executed. This investigation revealed that the cause of the vibration was vortex shedding from the circular pipes in the heat exchanger. Vortices from the pipes excited acoustic resonance in the heat exchanger room, which, in turn, made the structure vibrate. Through inserting the baffles between the pipes, which had an effect of cutting the acoustic wave at resonance frequency, the vibration was eliminated dramatically.

  • PDF