• Title/Summary/Keyword: acoustic variations

Search Result 153, Processing Time 0.023 seconds

Underwater Acoustic Environment and Low Frequency Acoustic Transmission in the Sub-Polar Front Region of the East Sea (동해 아극전선 해역의 수중음향환경 및 저주파 음파전달 양상)

  • Lim, Se-Han;Ryu, Gun-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2009
  • To investigate low frequency acoustic transmissions in the Sub-Polar Front(SPF) of the East Sea, numerical experiments are conducted with Range dependent Acoustic Model(RAM) using Circulation Research of the East Asian Marginal Seas(CREAMS) data and Autonomous Profiling Explorer(APEX)) data. Significant seasonal variations of sea water properties are existed across the Sub-Polar Front(SPF) region from the north and the south. The model results show that Transmission Loss(TL) decrease(about 20dB) with ideal front in the warm region whereas TL increase(about 25dB) with ideal front in the cold region. Regardless of season(both in summer and winter), when the sound source is located in the cold region of the SPF, the model results show weak TL, compared to the case of the source in the warm region(Maximum difference of TL reaches 28dB). This difference between the cases when the source is located in the cold region and the warm region, is accounted for from the different vertical profiles of sound speed in both regions.

The Acoustic Characteristics in Women Diver's Soombijil Sound (해녀의 숨비질소리에 대한 음향특징)

  • Han, Ji-Yeon;Park, Hyun-Ja;Jeong, Ok-Ran
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.176-179
    • /
    • 2007
  • This study examined the acoustic characteristics in women diver's Soombijil sound. A total of 18 women divers was attended this study. Acoustic analysis was performed via Praat. Soombijil sound were classified into three types as pitch variations in beginning, middle, and ending part. Type I showed increasing-decreasing-flat. Type II was identified by the shape of flat-flat-increasing. The shape of type III showed increasing-decreasing-increasing. Duration of Soombijil sound was mean 1.48 sec. The range of frequency was 1591.54 ${\sim}$ 4477.13 Hz. FFT analysis showed that frequencies were concentrated 500${\sim}$2000 Hz. Type I and II showed two peaks at 500 Hz and 1500${\sim}$2000 Hz. Type III has one peak below 500 Hz.

  • PDF

Heat and Mass Transfer Enhancement of a pendant droplet on heated horizontal surface by acoustic resonance (가열된 평판위에 매달려 있는 액적의 음향공진에 의한 열 및 물질 전달 촉진에 관한 연구)

  • Moon, Jong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.335-340
    • /
    • 2005
  • Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. The evaporation was observed at atmosphere pressure. The droplet was recorded throughout the entire evaporation process and transient variations of the volume was measured. The evaporation process of oscillating droplet with thermofoil has been also observed to investigate analyzing the resonance effect on the thermal characteristics of droplet. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. During imposing the acoustic wave, the pendant droplet makes a rotating motion in its longitudinal axis which is a new shape oscillation mode. The evaporation rate of a pendant droplet at resonant frequency is significantly enhanced.

  • PDF

Speaker Variation in Number Production by Males (남성의 숫자음 발성에 나타난 화자변이)

  • Yang, Byung-Gon
    • Speech Sciences
    • /
    • v.8 no.3
    • /
    • pp.93-104
    • /
    • 2001
  • The author analyzed acoustic parameters of ten Korean numbers produced by ten male students using Praat. Variations of f0, F1, F2 and F3 within and between speakers were examined by determining an average and standard deviation of the parameters of each number and by comparing the acoustic values with one another. Results showed that each subject produced the numbers within a certain range of variation across time. Thus, speaker identification can be more certain using dynamic information of the acoustic parameters within each vocalic segment. Also, percent difference of within-subjects' variation to that of between-subjects can be utilized to determine which sounds would be better stimuli for speaker identification. According to the criteria, the number '2' proved the best stimulus while the number '7' was the worst. Future studies will be necessary to explore robust methods of speaker identification under noisy conditions.

  • PDF

Measurement of Sound Speed Following the Fluid Temperature Using Acoustic Inspection Device

  • Jeon, E.S.;Kim, W.T.;Kim, I.S.;Park, H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.207-211
    • /
    • 2010
  • In this paper, the fluid AID(acoustic inspection device) was developed to measure SOS(speed of sound) since fluids used in most of industrial fields have different properties and its equipment is highly expensive. From AID developed, it is intended to get potentially the capability to distinguish the kind of fluid using the measurement by the SOS at various fields. In order to measure the sound speed of specific fluids, the measurement system and ultrasonic sensors are composed. The fluid used in the experimental work are soybean oil, glycerin, diesel oil and the error of time difference due to the container wall is extracted for preliminary experiment. As results, the variations of sound speed according to the temperature change of target fluid were analyzed and the polynomial equations were proposed.

Performance Analysis of Synchronization Protocols for Underwater Acoustic Networks (수중 장거리 네트워크를 위한 동기화 프로토콜 성능분석)

  • Cho, A-ra;Lim, Yong-kon;Choi, Youngchol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.68-71
    • /
    • 2018
  • In this paper, we propose a synchronization protocol for underwater acoustic networks which aims to minimize the effects of long propagation delay and uncertain delay variations and employs packet train scheme with considering low data rate. The proposed protocol uses an one-way delay measurement method by transmitting consecutive packets and acquires synchronization only considering propagation delay variations by calculating packet arrival time differences. We perform simulations under various network conditions, such as node mobility, time interval for packet transmission, network range, and elapsed time after synchronizing. The simulation results shows the superiority of our protocol, compared with a previously proposed protocol.

  • PDF

Role and Properties of Rhythm in French Intonation

  • Yuh, Hea-Ok;Lee, Eun-Yung
    • Speech Sciences
    • /
    • v.12 no.1
    • /
    • pp.107-119
    • /
    • 2005
  • The current study considers that the distinctive acoustic properties and variations in the closed plateau are realized by four different pitch accents(/Hi*_ H*/ or /Hi*_$h*_f$ for an emphatic phrase and /hi*_ H*/ for a neutral phrase) in an intermediate phrase in the French intonational structure. Thus, an attempt is made to define the acoustic property of the CP in the ip according to the duration time and pitch range, while different combinations of the four pitch accents of the CP are used to explain the way a speaker will highlight. The duration time of the CP was measured at about 0.67 sec. for males and 0.75 sec. for females. The duration properties of the plateau in the CP were found to control the pitch range based on two different prominent pitch accents, which appeared in more than two APs. Therefore, the ip was identified as having a hierarchical level in the French intonational structure, along with the AP and IP. In addition, the CP in the ip was used as a specific location to explain the pragmatic meaning of the rhythm using the two acoustic factors and different combinations of the four pitch accents.

  • PDF

Computation of Laryngeal Flow and Sound through a Dynamic Model of the Vocal Folds (동적 성대 모델을 이용한 후두 내 유동 및 음향장에 대한 수치 연구)

  • Bae, Young-Min;Moon, Young-J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.21-24
    • /
    • 2008
  • The present study numerically investigates the glottal airflow characteristics as well as acoustic features of phonation fully coupled with dynamic behavior of vocal folds. The vocal folds are described by a low-dimensional body-covered model characterized by bio-mechanical parameters such as glottal width, vocal folds stiffness, and subglottal pressure. The flow in the vocal tract is modeled as an incompressible, axisymmetric form of the Navier-Stokes equations (INS), while the acoustic field is predicted by the linearized perturbed compressible equations (LPCE). The computed result shows that a two-mass model of vocal folds is sufficient to reproduce temporal variations in oral airflow and glottis motion produced by female speakers. It is also found that i) the glottal width has a significant effect on the amplitude of glottal flow, and thus on the amplitude of acoustic wave in the vocal tract, ii) the vocal fold tension is the main control parameter for the fundamental frequency of phonation, iii) the subglottal pressure plays an appreciable role on reproduction of the self-sustained oscillation of vocal folds, and iv) the strength of pulsating airflow and vortical structures are primarily affected by glottal width and subglottal pressure, and are closely related to pitch, loudness, and voice quality. Finally, more comprehensive explanation about the difference between one- and two-mass models is presented with discussion of effectiveness of vocal folds oscillation and voice quality.

  • PDF

Prediction of Wind Farm Noise with Atmospheric Stability (대기 안정 상태에 따른 풍력 단지 소음 전파 예측)

  • Son, Eunkuk;Lee, Seunghoon;Jeon, Minu;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • Noise generated from wind turbines has been predicted by numerical methods. Sound pressure level(SPL) on the turbines is predicted after aerodynamic analysis is carried out by Wind Turbine Flow, Aeroacoustics and Structure analysis (WINFAS) code. The level of each panel of acoustic sphere is determined by the sum of tonal, turbulence ingestion and airfoil self noise. With the noise source database, the acoustic sphere, SPL on the ground is calculated using the model based on acoustic ray theory. The model has been designed to consider the effects on the condition of terrain and atmosphere. The variations of SPL on the ground occur not only because of the different source level but also because of the nonuniform distributions of the sound speed along the height. Hence, the profile of an effective sound speed which is the sum of the contribution of sound speed to a temperature gradient and a wind speed variation is used by the theory based on atmospheric stability. With the integrated numerical method, the prediction of sound propagation on the wind farm is carried out with the states of the atmospheric stability.

  • PDF

Enhanced Approach Using Computational and Experimental Method for the Analysis of Loudspeaker System

  • Park Seok-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.90-98
    • /
    • 2005
  • Enhanced approach using computational and experimental method is proposed and performed to describe very well the behavior of loudspeaker than conventional method. Proposed procedure is composed of four parts. First, Thiele-Small parameters for test loudspeaker are identified by an electrical impedance method like as a delta mass method. Second part includes the processes to measure physical properties. Physical data like masses and thicknesses of loudspeaker's components are measured by an electrical precision scale and a digital vernier caliper. Third, the identified Thiele-Small parameters are proposed to be used as load boundary conditions for vibration analysis instead of electromagnetic circuit analysis to get a driving force upon bobbin part. Also, these parameters and physical data are used to modify physical properties required for computation to accommodate simulated sound pressure level with measured one for loudspeaker enclosure system. These data like as Young's modulus and thickness for a diaphragm are required for vibration analysis of loudspeaker but not measured accurately. Finally, it was investigated that simulated sound pressure level with full acoustic modeling including an acoustic port for test loudspeaker agreed with experimental result very well in the midrange frequency band(from 100 Hz to 2,000 Hz). In addition, several design parametric study is performed to grasp acoustical behaviors of loudspeaker system due to variations of diaphragm thicknesses and shapes of dust cap.