• 제목/요약/키워드: acoustic resonator

검색결과 252건 처리시간 0.027초

음향공 오리피스 길이 변화에 따른 감쇠 효과 (Effects of Orifice Length on Helmholtz Resonator)

  • 송재강;고영성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.36-39
    • /
    • 2008
  • 연소 불안정 현상은 액체로켓엔진 개발과정에 있어서 반드시 해결해야 하는 문제이다. 이것을 억제하기 위한 도구 중의 하나인 음향공의 오리피스 길이 변화에 의한 감쇠 효과를 선형 음향 해석과 실험을 통하여 연구하였다. 오리피스의 길이가 짧아질수록 감쇠효과가 증가하는 것을 확인하였으며 실험과 선형 음향 해석 결과가 서로 동일한 경향을 보이는 것을 확인 하였다. 또한, 가진 음원의 크기에 따른 실험을 수행하였는데 그 결과 오리피스 길이와 단면적이 작아질수록 가진 음원의 크기 증가의 따른 비선형성이 증가하는 것을 확인하였다.

  • PDF

Hofler 타입 열음향 냉장시스템의 공진특성과 냉장성능 (Acoustic resonance and refrigerating capability of a Hofler type thermoacoustic refrigerating system)

  • 하제규
    • 한국음향학회지
    • /
    • 제16권1호
    • /
    • pp.76-80
    • /
    • 1997
  • Hofler 타입의 열음향 냉장시스템에 있어서 음향학적 공진특성을 해석하고, 공진특성이 냉장성능에 미치는 영향을 시스템의 제작 및 냉장 실험을 통하여 확인하였다. 열음향 냉장시스템의 공진특성을 결정하는 주요 인자는 공명구(cavity)와 가는 관, 그리고 굵은 관으로 구성되는 공명기의 특성과, 구동 스피커의 특성, 그리고 스피커 후면부의 음향학적 특성이며, 다시 스피커의 전기적 특성과 결합되어 전기적 공진특성이 정해진다. 또한 공명기에서 발생하는 벽-효과(wall effect)를 통한 감쇠로 인하여 공진특성이 둔해진다. 제작된 열음향 냉장시스템에 대한 해석 및 실험결과 전체 공진특성은 공명기에 의하여 결정되지만 후면부의 강성과 감쇠로 인하여 공진특성이 상당히 둔화되고, 냉장실험 결과 정확한 공진특성의 유지가 냉장성능에 큰 영향을 마침을 확인하였다.

  • PDF

Optimization of Operational and Constitutional Geometric Parameters for Thermoaoustic Energy Output

  • Oh, Seung Jin;Shin, Sang Woong;Chen, Kuan;Chun, Wongee
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.28-38
    • /
    • 2014
  • The effects of geometric parameters (stack position, stack length, resonator tube length) and varying input power over acoustic energy output were investigated. The acoustic laser kit (Garret 2000) was used for the construction of TA lasers. A series of sound pressure level measurements in different orientations did not differ significantly confirming that the sound wave generated could be assumed as a spherical wave. An increase in acoustic pressure was recorded with respective increase in input power, stack and resonator tube lengths owing to their relative influence over heat transfer rate and critical temperature gradient across the stack.

공조용 로터리 압축기의 소음 저감에 관한 연구 (A Study on Noise Reduction of Rotary Compressor)

  • 안병하;김영수
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF

Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1461-1469
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by a linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analyses are conducted in the combustors without and with acoustic resonator, which is one of the acoustic-damping devices or combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in good agreement with the measurement data. In this regard. the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. From the numerical results for the combustor with present acoustic resonators installed, the acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity. It is found that the resonators with present specifications are not optimized and thus, the improved specification or design is required.

1단자 공전기 특성을 통한 SAW 대역통과여파기 설계 (Design SAW BPF Using 1Port Resonance Characteristic)

  • 최승완;손창신;정명섭;이택주;김형석;박준석;임재봉
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권2호
    • /
    • pp.83-90
    • /
    • 2005
  • In this paper, we proposed the newly design method for extracting of the saw resonator characteristic. For the parameters of the proposed equivalent model, we adjusted and optimized the variables of several functions. As verification of proposed method, we firstly designed and fabricated cellular saw resonator by using the proposed model resonator. As the simulated and measured results of the proposed design method are almost equaled, we confirmed the usefulness of this method. we knew the usefulness of this method. Finally we designed the 800MHz cellular Tx/Rx band pass filter by using this designed resonator.

이중 에어갭 공명기의 소음 저감 특성 (Noise Reduction Characteristics of a Double Air-gap Resonator)

  • 강상욱;이장무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.202-207
    • /
    • 2003
  • In the paper, the noise reduction characteristics of a double-gap resonator, which is installed inside an enclosed cavity and is composed of two air-gaps and two partition sheets, are introduced by theoretical analyses and experimets. Analysis for a simple, theoretical model reveals that the double-gap resonator is more effective than the single-gap resonator that consists of an air-gap and a partition sheet, in that the former requires a smaller space than the latter. Furthermore, this theoretical conclusion is verified by comparison experiments using an actually manufactured enclosed cavity, of which the boundary surfaces are made of thick, stiff panels that can be assumed as rigid walls.

  • PDF

소형 위성 발사체의 페이로드 페어링부에 대한 음향 가진 시험 (Acoustic test of the payload fairing of Korea satellite launch vehicle)

  • 박순홍;서상현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.220-223
    • /
    • 2007
  • Acoustic test of the payload fairing of Korea satellite launch vehicle was conducted to verify the performance of acoustic protection system installed inside the payload fairing. This paper briefly introduces the acoustic test procedures and its results. Overall 148 dB acoustic loads were exerted on the payload fairing structures which mated with the upper stage structure of the launch vehicle. In order to verify the increase of insertion loss by the acoustic protection system, two kinds of test were performed. One is conducted with acoustic protection system and the other without acoustic protection system. Internal acoustic loads as well as external ones were measured and the measured insertion losses were compared with the requirement. The results showed that the acoustic protection system increases the insertion loss by more than 6 dB above 125 Hz. They also indicated that some design modification of Helmholtz resonator array is required to increase the insertion loss at a cavity resonant frequency.

  • PDF