• Title/Summary/Keyword: acoustic field analysis

Search Result 306, Processing Time 0.023 seconds

Research trends in seabird and marine fish migration: Focusing on tracking methods and previous studies (바닷새 및 해양어류의 이동 연구 동향: 위치추적 기법과 연구 사례를 중심으로)

  • Jin-Hwan Choi;Seongho Yun;Mi-Jin Hong;Ki-Ho Kang;Who-Seung Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.25-53
    • /
    • 2022
  • In this study, trends in research methods and topics of seabird and marine fish migration were examined. Based on the framework of existing animal migration studies, future research directions were proposed in relation to the migration of seabirds and fish. In terms of research methodology, with the development of science and technology, tracking techniques using radio telemetry, acoustic telemetry, RFID (radio-frequency identification), satellite tracking, and geolocators are widely used to study seabird and fish migration. Research is also conducted indirectly through a population survey and the analysis of substances in the body. Research contents are largely classified into extrinsic factors that affect migration(such as environmental variables and interspecific competition), intrinsic factors such as hormones, anthropogenic activities including fishery and offshore wind farm, and the effect of global climate change. In future studies, physiological factors that influence or cause migration and dispersal should be identified concerning intrinsic factors. For the analysis of migration ability, it is necessary to study effects of changes in the magnetic field on the migration ability of seabirds and fish, interspecific differences in spatiotemporal migration ability, and factors that influence the migration success rate. Regarding extrinsic factors, research studies on effects of anthropogenic disturbances such as fishery and offshore wind farm and global climate change on the migration and dispersal patterns of marine animals are needed. Finally, integrated studies on the migration of seabirds and fish directly or indirectly affecting each other in various ecological aspects are required.

Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test (압열인장시험을 이용한 화강암의 지연파괴특성 및 장기안정성 평가)

  • Jung, Yong-Bok;Cheon, Dae-Sung;Park, Eui-Seob;Park, Chan;Lee, Yun-Su;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2014
  • Long-term stability and delayed failure of granite were evaluated through the laboratory test based on Wilkins method and Brazilian disc test (BDT) which yields tensile strength, mode I fracture toughness and subcritical crack growth parameters. Then, the long-term strength of granite was estimated by using analytical models and long-term stability of compressed air-energy storage (CAES) pilot cavern pressurized up to 5 ~ 6 MPa was evaluated using numerical code, FRACOD with the determined subcritical crack growth parameters. The results of test and analyses showed that the subcritical crack growth index, n was determined as 29.39 and the inner pressure of 5 ~ 6 MPa had an insignificant effect on the long-term stability of pilot cavern. It was also found that the measurement and analysis of acoustic emission events can describe the accumulation of damage due to subcritical crack growth quantitatively. That is, AE monitoring can provide the current status of rock under loading if we make an identical installation condition in the field with that of the laboratory test.

Proper Monitoring Methods for Safety Management of Tailings Dam (광물찌꺼기적치장의 안전관리를 위한 적정 모니터링 방안 연구)

  • Jung, Myung Chae;Kim, Jeong Wook;Hwang, In-ho;Yang, In Jae;Park, Jay Hyun;Park, Ju Hyun;Kim, Tae Youp
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.576-587
    • /
    • 2018
  • This study has focused on analysis factors affecting safety monitoring system at tailings sites, and the evaluation equipment to monitor the factors. Twenty sites at eighteen mines with unsafe conditions were selected to examine the equipment. There were three main factors influenced safety in the sites including surface erosion, piping, and slope instability. In detail, the surface erosion was divided into three sub-factors (planting, soil-topping layer, and tailings), piping into three sub-factors (liner, rain protection facility and leachate), and slop instability was also divided into three sub-factors (slop, concrete wall, and reinforcing wall). As results of in-field measurement, a CCTV was the most effective facility, and electrical resistivity survey, acoustic sensing, thermal liner sensor, structure inclinometer, rainfall meter, and flowmeter were also highly effective. According to applications of the facilities in the unstable tailings, structural defects were mainly found in the piping, which was the most important monitoring factor for safety management of tailings sites.

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L. (노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로))

  • Son, Ji-Won;Lee, Gwang-Gyu;An, Yoo-Jin;Shin, Jin-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

Accuracy Analysis of ADCP Stationary Discharge Measurement for Unmeasured Regions (ADCP 정지법 측정 시 미계측 영역의 유량 산정 정확도 분석)

  • Kim, Jongmin;Kim, Seojun;Son, Geunsoo;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.553-566
    • /
    • 2015
  • Acoustic Doppler Current Profilers(ADCPs) have capability to concurrently capitalize three-dimensional velocity vector and bathymetry with highly efficient and rapid manner, and thereby enabling ADCPs to document the hydrodynamic and morphologic data in very high spatial and temporal resolution better than other contemporary instruments. However, ADCPs are also limited in terms of the inevitable unmeasured regions near bottom, surface, and edges of a given cross-section. The velocity in those unmeasured regions are usually extrapolated or assumed for calculating flow discharge, which definitely affects the accuracy in the discharge assessment. This study aimed at scrutinizing a conventional extrapolation method(i.e., the 1/6 power law) for estimating the unmeasured regions to figure out the accuracy in ADCP discharge measurements. For the comparative analysis, we collected spatially dense velocity data using ADV as well as stationary ADCP in a real-scale straight river channel, and applied the 1/6 power law for testing its applicability in conjunction with the logarithmic law which is another representative velocity law. As results, the logarithmic law fitted better with actual velocity measurement than the 1/6 power law. In particular, the 1/6 power law showed a tendency to underestimate the velocity in the near surface region and overestimate in the near bottom region. This finding indicated that the 1/6 power law could be unsatisfactory to follow actual flow regime, thus that resulted discharge estimates in both unmeasured top and bottom region can give rise to discharge bias. Therefore, the logarithmic law should be considered as an alternative especially for the stationary ADCP discharge measurement. In addition, it was found that ADCP should be operated in at least more than 0.6 m of water depth in the left and right edges for better estimate edge discharges. In the future, similar comparative analysis might be required for the moving boat ADCP discharge measurement method, which has been more widely used in the field.

Studies on Estimation of Fish Abundance Using an Echo Sounder ( 2 ) - The Relationship between Acoustic Backscattering Strength and Distribution Density of Fish in a Net Cage- (어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 2 ) - 어군의 분포밀도와 초음파산란강도의 관계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 1991
  • This paper describes the fish-density dependence of the mean backscattering strength with aggregations of encaged, free-swimming fish of known density in relation to the experimental verification of echo-integration technique for estimating the density of fish shoals. In this experiment, various numbers of gold crussian, Carassius burgeri burgeri, with a mean length of 18.5cm and a mean weight of 205.9g, were introduced into a net cage of approximately 0.76m super(3). During the backscattering measurements. the cage was suspended on the sound axis of the 50kHz transducer having a beam width of 33 degrees at -3dB downpoints. The volume backscattering strengths from fish aggregations were measured as a function of fish density. Data acquisition, processing and analysis were performed by means of the microcomputer-based sonar-echo processor including a FFT analyzer. The calibration of echo-sounder system was carried out at field with a steel ball bearing of 38mm in diameter having the target strength of -40.8dB. The dorsal-aspect target strengths on anesthetized specimens of gold crussian used in the cage experiment were measured and compared with the target strength predicted by the fish density-echo energy relationship for aggregations of free-swimming gold crussian in the cage. The results obtained can be summarized as follows: 1. The target strengths in the dorsal aspect on anesthetized specimens of gold crussian, with the mean length of 19.1cm and the mean weight of 210.5g, varied from -40.9dB to -44.8dB with a mean of -42.6dB. This mean target strength did not differ significantly from that predicted by the regression of echo energy on fish density of free-swimming gold crussian in the cage. It suggests that the target-strength measurements on anesthetized fish was valid and can be representative for live, free-swimming fish. 2. The relationship between mean backscattering strength(, dB) and distribution density of gold $crussian(\rho, $ fish/m super(3)) was expressed by the following equation; =-41.9+11 $Log(\rho)$ with a correlation coefficient of 0.97. This result support the existence of a linear relationship between fish density and echo energy, but suggest that this line has steeper slope than the regression by the theory of estimating the density of fish schools.

  • PDF