• Title/Summary/Keyword: acoustic field analysis

Search Result 306, Processing Time 0.022 seconds

A Numerical Study on Analysis of Low Frequency Aero-acoustic Noise for a HAWT of NREL Phase VI (NREL Phase VI 수평축 풍력터빈의 저주파 공력소음 해석에 관한 수치적 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1170-1179
    • /
    • 2009
  • The purpose of this work is to predict the low frequency aero-acoustic noise generated from the horizontal axis wind turbine, NREL Phase VI for the whole operating conditions of various wind speeds using large eddy simulation and Ffowcs-Williams and Hawkings model provided in the commercial code, FLUENT. Because there is no experimental data about wind turbine noise, we first of all compared aerodynamic performance such as shaft torque and power with experimentally measured value. Performance results show a good agreement with experimental data within about 0.8%. As the wind speed increases, the overall sound pressure level and the sound pressure level by the quadrupole and dipole source show a increasing tendency. Also, sound pressure level is proportional to $r^{-2}$ in the near field and $r^{-1}$ in the far field according to the increase of distance from the center of hub of wind turbine. According to 2 times increase of distance, sound pressure level is reduced by about 6dB.

A Study on Active Control of the Radiated Duct Noise with Insufficient Number of Control Dources and Microphones (덕트 내부의 고차모드 수보다 적은 수의 제어음원과 마이크로폰을 이용한 덕트 방사소음 제어에 관한 연구)

  • 윤두병;김양한;정균양;조대승
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.283-288
    • /
    • 1998
  • If one wants to control the noise from a duct, then one must have sufficient number of sensors and actuators so that the control system is observable and controllable. A number of sensors and actuators for control of radiating noise from a duct have to be incorporated with the number of modes which one wants to control. These considerations motivated the present study that considers a control system which has less microphones and actuators than required. In this work, by theoretical analysis and numerical simulation, the control performance and robust reliability of such a kind of control system is investigated in terms of sound-field variables and control system variables. Then the possibility of implementation of the robust radiation power control system is verified by theoretical analysis and numerical simulation. In addition, the control performance of the control system is verified by experiment.

  • PDF

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method (격자볼츠만기법을 이용한 선박 파이프내 유동소음해석)

  • Beom-Jin Joe;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.512-519
    • /
    • 2023
  • Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system (감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구)

  • Garam, Ku;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.705-712
    • /
    • 2022
  • A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.

Effectiveness of the Angular Spectrum Method for analysis of Acoustic near-field. (근거리 초음파 음장해석에 있어서의 각스펙트럼법의 유효성 검토)

  • 김정순
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.8-13
    • /
    • 1996
  • 균질 매질내에 형성되는 근거리 음장의 해석에는 종래 회절 이론에서의 Rayleigh 적분식에 근거한 Lommel 근사식이 주로 이용되어져 왔다. 그러나, 불균질한 매질에서는 그 방법의 적용이 어렵고, 유한요소법등 새로운 방법이 적용되어야 한다. 본 연구에서는 불균질 매질에서의 음장을 해석하는 한 방법으로 Angular Spectrum법을 제안하고, 경계를 가상한 등수온의 물에 대하여 Lommel 근사식에 의해 직접 산출한 음장과 Angular Spectrum법을 적용하여 산출한 음장을 서로 비교함으로써 그 유효성을 검토하였다.

  • PDF

An Analysis of the Acoustic Field in a Closed Structure by a Centrifugal Fan (원심팬에 의한 닫힌 구조물 내부의 음향장 해석)

  • 전완호;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.602-607
    • /
    • 1997
  • 원심팬의 소음해석 기법은 Lighthill 방정식을 풀어야 하는 어려운 작업이기 때문에 아직 해석된 예가 드물다. 그래서 본 연구에서는 이미 개발한 움직이는 쌍극에 의한 소음 계산 기법을 이용해서 원심팬의 소음을 자유공간에서 계산한다. 닫힌 공간내의 음장은 경계요소법 혹은 유한요소법으로 많이 연구가 되어 왔다. 본 연구도 일반적으로 많이 사용되는 경계요소법을 이용한다. 이 세가지 방법은 원심팬에 의한 유동/음원 특성을 계산하고, 계산된 음원특성을 이용해서 경계요소법으로 전체 음향장을 계산하는 순서로 수행된다.

  • PDF

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

A Study on the Noise Reduction through the Control of Internal Flow for a Slim Type External ODD (슬림타입 외장형 ODD 내부의 유동 안정을 통한 소음저감에 관한 연구)

  • Lee, Woo-Jin;Seo, Jun-Ho;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.72-77
    • /
    • 2012
  • The demand for the laptop computer has been increased day by day and most of users ask quiet computer and devices to work in comfortable environment. One of the devices which generate acoustic noise is an external ODD. Unlike the internal ODD, the external ODD is easy to emit noise because it runs outside of the computer and also it is packed with a thin plastic covers. As the disk rotates, vortex flow is generated inside of the cavity due to various and complicated mold parts of the cover. In addition, there is a gap between the disk tray and the upper/lower cases, through which the air flows as well as the noise leaks. In this study, we have proposed how to reduce the acoustic noise of an external ODD using numerical and experimental analysis. The pressure fluctuations and turbulent kinetic energy distributions are calculated for the developed model. The results show that the sound pressure level is reduced by 2.3dB through simple modifications of ribs of the top cover, which remove or suppress flow instabilities inside of the cavity.

Study on the Performance of the Grooves for Fluid Dynamic Bearings (유체동압베어링의 그르브 성능에 관한 연구)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.91-93
    • /
    • 2011
  • This paper is presented for the performance of the Fluid Dynamic Bearing(FDB) by the groove design and the tooling condition. Recently, spindle motors which require smaller size, lower sound noise, lower vibration, and higher speed of the rotation have been placed in high value-added products including Digital Lightening Processors(DLP), Hard Disk Drives(HDD), and ODDs. The spindle motors using the sintered porous metal bearing have higher vibration and acoustic noise by dry contact and large tolerance of the bearing parts. The Fluid Dynamic Bearing (FDB) with grooves is appropriate for spindle motors adequate in regards to mechanical vibration and acoustic noise. The paper shows the performance comparisons of between sintered porous metal bearing and FDB, and each FDBs according to the tooling deviations of grooves by the Finite Element Analysis(FEA) of the mechanical field. This paper shows the methods to make the grooves, the groove's depth, and the prototype of the motor with the fluid dynamic bearing. The performance characteristics of the grooves with the FDB are verified by the experimental results.

Boundary Element Analysis for Individual Acoustic Responses in Ear Canal of Korean Adults (한국인 성인남자의 개별 이도내 음향응답에 대한 경계요소 해석)

  • Lee, Dooho;Ahn, Tae-Soo;Son, Young-Seok;Shin, Jeeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.226-233
    • /
    • 2013
  • Individual differences in head-related transfer functions(HRTFs) were calculated using boundary element(BE) models for three Korean adults. The BE models for the individuals were developed from the computerized tomography(CT) images of the individuals. The BE models were composed of the head, pinna, and ear canal. The frequency-dependent impedance boundary conditions were imposed on the skin, hair, and tympanic membrane. The HRTFs calculated from the individual BE models showed large difference above 2 kHz in magnitude and in the locations of peaks and valleys of the frequency spectrums, which should be considered in virtual auditory sound field. The identified individual differences in the HRTFs demonstrate that the developed BE models can be utilized successfully in order to obtain the HRTFs information of individuals.