• 제목/요약/키워드: acoustic energy

검색결과 847건 처리시간 0.025초

2차원 절삭과정에서의 Acoustic Emission과 절삭 파라미터 사이의 관계 (Relationship between Acoustic Emission and Cutting Parameters of the Orthogonal Cutting Process)

  • 최성주;강명순
    • 오토저널
    • /
    • 제9권2호
    • /
    • pp.47-57
    • /
    • 1987
  • The objective of this study is to establish the comprehensive analytical relationship between acoustic emission and fundamental parameters of the orthogonal cutting process. The sources of acoustic emission in the orthogonal metal cutting process was identified as deformation in the shear zone and sliding friction at the chip-tool interface. The validity of this relationship is evaluated by a series of tests varing cutting speed and rake angle for A16063 tube. Strong dependence of the RMS voltage of acoustic emission on cutting speed and rake angle was observed. It was also found that the percentage contribution of AE energy at each zone for the total AE activity is constant in accordance with the change of cutting speed. The relationship between the RMS of acoustic emission and the fundamental cutting parameters was modified in order to be utilized independent of rake angle.

  • PDF

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

음향방출법에 의한 SM45C 고주파 열처리 강의 기계적 특성 평가 (The Analysis of Mechanical Properties of the High Frequency Induction Hardening SM45C Steel by Acoustic Emission)

  • 이장규
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.93-100
    • /
    • 2011
  • This study deals with the high frequency induction hardening (HF at $850^{\circ}C$, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen, which was tempered at $150^{\circ}C$, did not show any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE (acoustic emission) amplitude distribution showed between 45dB and 60dB. (2) A slip and fracture occurred at the hole area of the HF specimen which was tempered at $300^{\circ}C$. As they pass the yield point, the AE energy is increased intermittently and AE amplitude distribution exists between 70dB and 85dB. In addition, after imposing the maximum tensile load, AE signals showed high amplitude and energy distribution. The AE amplitude showed between 45dB and 70dB. (3) A brittle fracture occurred at HF specimen which was tempered at $450^{\circ}C$ as if it is torn in the direction of $45^{\circ}$ on parallel area over the both sides of the tensile specimen, which lead to several peak appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.

Predicting Damage in a Concrete Structure Using Acoustic Emission and Electrical Resistivity for a Low and Intermediate Level Nuclear Waste Repository

  • Hong, Chang-Ho;Kim, Jin-Seop;Lee, Hang-Lo;Cho, Dong-Keun
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.197-204
    • /
    • 2021
  • In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.

Damage Monitoring of Concrete With Acoustic Emission Method for Nuclear Waste Storage: Effect of Temperature and Water Immersion

  • Park, June-Ho;Kwon, Tae-Hyuk;Han, Gyeol;Kim, Jin-Seop;Hong, Chang-Ho;Lee, Hang-Lo
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.297-306
    • /
    • 2022
  • The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.

Coherent Combination of Baryon Acoustic Oscillation Statistics and Peculiar Velocity Measurements from Redshift Survey

  • 송용선
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.46.1-46.1
    • /
    • 2011
  • New statistical method is proposed to coherently combine Baryon Acoustic Oscillation statistics (BAO) and peculiar velocity measurements exploiting decomposed density--density and velocity--velocity spectra in real space from the observed redshift distortions in redshift space, 1) to achieve stronger dark energy constraints, sigma(w)=0.06 and sigma(w_a)=0.20, which are enhanced from BAO or velocity measurements alone, and 2) to cross--check consistency of dark energy constraints from two different approaches; BAO as geometrical measurements and peculiar velocity as large scale structure formation observables.

  • PDF

고에너지 음향환경시험 튜브 개발 (Development of High Intensity Progressive Wave Tube)

  • 김영기;김홍배;문상무;우성현;임종민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.962-965
    • /
    • 2005
  • A high intensity progressive wave tube is installed at Korea Aerospace Research Institute (KARI) for acoustic environmental tests. The test facility has 700 mm x 800 mm cross-sectional area, and provides acoustic environment of 165 dB over the frequency range of $25Hz{\sim}10,000Hz$. The facility consists of a 6 m long acoustic wave tube, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of the facility and power generation systems are controlled to meet the requirement of the test. The shape and length of the tube has been designed by using the size of test objects and the wave propagation characteristics of the tube. The capacity of acoustic power generation systems is determined by the energy conversion of acoustic wave and the efficiency of acoustic modulators. Moreover, the paper introduces test run results of the tube. Overall of 163dB has been generated by using the test facility.

  • PDF

복소음향인텐시티법을 이용한 HVAC의 소음원 검출 (Identification of Noise Source of the HVAC Using Complex Acoustic Intensity Method)

  • 양정직;이동주
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1089-1096
    • /
    • 2010
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise measurement and noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. As an industrial application, the complex acoustic intensity method is applied to HVAC to identify sound radiation characteristics in the near field. Experimental complex acoustic intensity method was applied to HVAC, it is possible to identify noise sources in complicated sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. Especially, it can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for identification of noise. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

설정 음압 및 스펙트럼 재현을 위한 음향 환경 시험 챔버의 기본 설계 변수 선정 (Design of High Intensity Acoustic Test Facility to Generate Required Sound Pressure Level and Spectrum)

  • 김영기;우성현;김홍배;문상무;이상설
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.867-872
    • /
    • 2002
  • A high intensity acoustic test facility is constructed at Korea Aerospace Research Institute (KARI) by 2003. The reverberant chamber of the facility has a volume of 1,228 cubic meters and shall provide an acoustic environment of 152 dB over the frequency range of 25 Hz to 10,000 Hz. The facility consists of a large scaled reverberant chamber, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of a chamber and power generation systems are controlled to meet the requirement of the test. The volume of a reverberant chamber is controlled by the size of test objects and the reverberant characteristics of a chamber. The capacity of acoustic power generation systems is determined by the energy absorption of a chamber and the efficiency of acoustic modulators. Simple math is employed to calculate the required power of acoustic modulators. Moreover, the paper explains how the distribution of sound pressure level at low frequency is checked by analytical and numerical methods.

  • PDF

Cracks evolution and multifractal of acoustic emission energy during coal loading

  • Kong, Xiangguo;Wang, Enyuan;He, Xueqiu;Liu, Xiaofei;Li, Dexing;Liu, Quanlin
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.107-113
    • /
    • 2018
  • Coal samples with different joints morphology were subjected to uniaxial compression experiments, cracks evolution was recorded by Nikon D5300 and acoustic emission (AE) energy signals were collected by AEwin Test for Express-8.0. During loading process, coal samples deformed elastically with no obvious cracks changes, then they expanded gradually along the trace of the original cracks, accompanied by the formation of secondary cracks, and eventually produced a large-scale fracture. It was more interesting that the failure mode of samples were all shear shape, whatever the original cracks morphology was. With cracks and damage evolution, AE energy radiated regularly. At the early loading stage, micro damage and small scale fracture events only induced a few AE events with less energy, while large scale fracture leaded to a number of AE events with more energy at the later stage. Based on the multifractal theory, the multifractal spectrum could explain AE energy signals frequency responses and the causes of AE events with load. Multifractal spectrum width (${\Delta}{\alpha}$), could reflect the differences between the large and small AE energy signals. And another parameter (${\Delta}f$) could reflect the relationship between the frequency of the least and greatest signals in the AE energy time series. This research is helpful for us to understand cracks evolution and AE energy signals causes.