• 제목/요약/키워드: acoustic emission technology

검색결과 320건 처리시간 0.024초

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Experimental Study and Numerical Modeling of Keyhole Behavior during CO2 Laser Welding

  • Kim, Jong-Do;Oh, Jin-Seok;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.282-292
    • /
    • 2007
  • The present paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurement during $CO_2$ laser welding of 304 stainless steel in different processing conditions. Video images with high spatial and temporal resolution allowed to observe the melt dynamics and keyhole evolution. The existence of keyhole was confirmed by the slag motion on the weld pool. The characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal AE and LE spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation. The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10 mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

Sensing properties of optical fiber sensor to ultrasonic guided waves

  • Zhou, Wensong;Li, Hui;Dong, Yongkang;Wang, Anbang
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.471-484
    • /
    • 2016
  • Optical fiber sensors have been proven that they have the potential to detect high-frequency ultrasonic signals, in structural health monitoring field which generally refers to acoustic emission signals from active structural damages and guided waves excited by ultrasonic actuators and propagating in waveguide. In this work, the sensing properties of optical fiber sensors based on Mach-Zehnder interferometer were investigated in the metal plate. Analytical formulas were conducted first to explore the parameters affecting its sensing performances. Due to the simple and definable frequency component, the Lamb wave excited by the piezoelectric wafer was employed to study the sensitivity of the proposed optical fiber sensors with respect to the frequency, rather than the acoustic emission signals. In the experiments, according to above investigations, spiral shape optical fiber sensors with different size were selected to increase their sensitivity. Lamb waves were excited by a circular piezoelectric wafer, while another piezoelectric wafer was used to compare their voltage responses. Furthermore, by changing the excitation frequency, the tuning frequency characteristic of the proposed optical fiber sensor was also investigated experimentally.

Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers

  • Yan, Jiachuan;Zhou, Wensong;Zhang, Xin;Lin, Youzhu
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1132-1141
    • /
    • 2019
  • Steel-concrete-steel (SCS) sandwich structures have important advantages over conventional concrete structures, however, bond-slip between the steel plate and concrete may lead to a loss of composite action, resulting in a reduction of stiffness and fatigue life of SCS sandwich structures. Due to the inaccessibility and invisibility of the interface, the interfacial performance monitoring and debonding detection using traditional measurement methods, such as relative displacement between the steel plate and core concrete, have proved challenging. In this work, two methods using piezoelectric transducers are proposed to detect the bond-slip between steel plate and core concrete during the test of the beam. The first one is acoustic emission (AE) method, which can detect the dynamic process of bond-slip. AE signals can be detected when initial micro cracks form and indicate the damage severity, types and locations. The second is electromechanical impedance (EMI) method, which can be used to evaluate the damage due to bond-slip through comparing with the reference data in static state, even if the bond-slip is invisible and suspends. In this work, the experiment is implemented to demonstrate the bond-slip monitoring using above methods. Experimental results and further analysis show the validity and unique advantage of the proposed methods.

음향스텔스 성능 향상을 위한 PRAIRIE 공기 분사량 제어 실험 (Tests on Ventilation Control of PRAIRIE for Improving Acoustic Stealth Performance)

  • 이희창;문영선;강승희
    • 한국군사과학기술학회지
    • /
    • 제23권6호
    • /
    • pp.602-608
    • /
    • 2020
  • PRAIRIE(Propeller Air Induced Emission) system is a kind of underwater radiated noise suppression systems to reduce the probability of the identification or classification of our warship's acoustic signature by an enemy ship. It is effective in case of strong cavitation events. This is because air bubbles emitted from the PRAIRIE system mitigate drastic collapses of the cavity bubbles that can generate an intense shock wave. However, when the PRAIRIE system is operated in a non or weak cavitation condition, it might increase the total level of underwater radiated noise and induce the acoustic signatures. Therefore, this paper presents the trial results on ventilation control of PRAIRIE to find a more efficient operation depend on the cavitation condition. Then, we show a variation of the amplitude modulation characteristics according to ventilation control.

304 스테인레스 강의 부식 손상 중 발생하는 음향방출신호 분석 (Detection of Acoustic Signal Emitted during Corrosion of 304 Stainless Steel)

  • 우카이거;최찬양;변재원
    • 비파괴검사학회지
    • /
    • 제33권5호
    • /
    • pp.409-414
    • /
    • 2013
  • 음향방출법을 이용하여 304 스테인레스 강의 부식 손상 과정을 평가하였다. 스테인레스 강의 가속부식시험을 수행하면서 음향방출신호를 수집할 수 있는 측정 시스템을 구성하였다. 양극분극시험에서 공식부식(pitting corrosion)이 발생하는 시점 이후부터 음향방출(AE)신호가 검출되기 시작함을 확인하였다. 부식 실험 후 시편 표면을 광학현미경으로 관찰하여 다수의 공식부식이 발생하였음을 검증하였다. 부식 시간의 증가에 따른 AE 누적카운트 증가율과 AE 신호 진폭의 변화는 3단계로 구분되는 특징을 보였다. 이러한 AE 신호 발생 특징을 스테인레스 강의 부식 발생 과정의 단계별 변화와 관련하여 고찰하였다. AE 신호를 이용하여 금속 소재의 부식 손상 정도 및 부식 과정의 평가 가능성을 제시하였다.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

연마재 워터젯을 위한 노즐상태 모니터링 시스템 설계 (Nozzle Condition Monitoring System for Abrasive Waterjet Process)

  • 김정욱;김노원;김철민;김성렬;김현희;이경창
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.817-823
    • /
    • 2020
  • In recent, the machining of difficult-to-cut materials such as titanium alloys, stainless steel, Inconel, ceramic, glass, and carbon fiber reinforced plastics (CFRP) used in aerospace, automobile, medical industry is actively researched. Abrasive waterjet is a non-traditional processing method in which ultra-high pressure water and abrasive particles are mixed in a mixing chamber and shoot out jet through a nozzle, and removed by erosion due to collision with a material. In particular, the nozzle of the abrasive waterjet is one of the most important parts that affect the machining quality as with a cutting tool in general machining. It is very important to monitor the condition of the nozzle because the workpiece is uncut or the surface quality deteriorates due to wear, expanding of the bore, damage of the nozzle and clogging of the abrasive, etc. Therefore, in this paper, we propose a monitoring system based on Acoustic Emission(AE) sensor that can detect nozzle condition in real time during AWJ processing.

ACOUSTIC EMISSION BEHAVIOR DURING STRESS CORROSION CRACKING OF INCONEL 600

  • Sung, Key-Yong;Cho, Sang-Jin;Kim, Bong-Hyun;Kim, In-Sup
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.145-150
    • /
    • 1996
  • Acoustic Emission (AE) technique was applied to stress corrosion cracking of Inconel 600 to investigate the AE capability of detecting crack growth and to obtain the relation between AE characteristics and crack mechanism. The specimens were heat-treated in two conditions (600$^{\circ}C$ for 30 hrs or 700 $^{\circ}C$ for 1 hr) and undergone CERT at two extension rates ( 2.5${\times}$10$^{-5}$ or 1.25${\times}$10$^{-4}$(mm/s)). It was found that the AE peak amplitude from plastic deformation was generally smaller than about 48dB (0.25mV), while Intergranular stress corrosion cracking (IGSCC) and ductile fracture produced higher values of 49 to 70dB (0.3mV to 3mV). The slopes of cumulative amplitude distribution (b-values) were linearly dependent on IGSCC susceptibility and the higher the susceptibility, the smaller the b-value. The monitoring of combined AE parameters such as event rate, amplitude, count and energy can provide effective means to clearly identify the transition from crack initiation and small crack growth to rapid growth of dominant cracks.

  • PDF

Mechanical behavior of Beishan granite samples with different slenderness ratios at high temperature

  • Zhang, Qiang;Li, Yanjing;Min, Ming;Jiang, Binsong
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.157-166
    • /
    • 2021
  • This paper aims at the temperature and slenderness ratio effects on physical and mechanical properties of Beishan granite. A series of uniaxial compression tests with various slenderness ratios and temperatures were carried out, and the acoustic emission signal was also collected. As the temperature increases, the fracture aperture of intercrystalline cracks gradually increases, and obvious transcrystalline cracks occurs when T > 600℃. The failure patterns change from tensile failure mode to ductile failure mode with the increasing temperature. The elastic modulus decreases with the temperature and increases with slenderness ratio, then tends to be a constant value when T = 1000℃. However, the peak strain has the opposite evolution as the elastic modulus under the effects of temperature and slenderness ratio. The uniaxial compression strength (UCS) changes a little for the low-temperature specimens of T < 400℃, but a significant decrease happens when T = 400℃ and 800℃ due to phase transitions of mineral. The evolution denotes that the critical brittle-ductile transition temperature increases with slenderness ratio, and the critical slenderness ratio corresponding to the characteristic mechanical behavior tends to be smaller with the increasing temperature. Additionally, the AE quantity also increases with temperature in an exponential function.