• 제목/요약/키워드: acoustic characteristic

검색결과 430건 처리시간 0.032초

Rijke Tube를 이용한 열환경에서의 음향공 특성연구 (Research on Damping Characteristic of Resonator in Flow with Thermal Gradient using the Rijke Tube)

  • 김기우;김근철;김중일;고영성;김홍집;권오성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.610-613
    • /
    • 2010
  • 수평방향의 전기히터 방식의 Rijke tube는 구조와 원리가 비교적 간단하여 열 음향 불안정 연구에 대표적으로 사용되고 있다. 본 논문은 음향공 특성연구의 일환으로 현재까지 수행하였던 상온감쇠실험과 열적 구배를 갖는 열 음향 불안정 환경과의 실험을 비교하기 위하여 연속적인 실험을 위하여 장시간에도 안정적인 Rijke Tube 제작 및 구성 방법을 제시하였다. 또한 모사된 열 음향 불안정 환경에 음향공을 장착하여 감쇠특성을 확인하여 추후 연구에 필요한 기초자료를 확보하였다.

  • PDF

지상탱크의 부식감지를 위한 음향방출시험에서 발생한 전자기간섭신호의 특성 연구 (A Study on the Characteristics of Electronic Magnetic Interference(EMI) in Acoustic Emission Testing for Corrosion Detection of Ground Tank)

  • 김승대;정우광
    • 한국재료학회지
    • /
    • 제17권5호
    • /
    • pp.239-243
    • /
    • 2007
  • The evaluation and comparison have been made for the EMI noise which was included in the signal from the sensors in the acoustic emission testing for the bottom plate of ground tank at full. The EMI signal has been classified into two types. One is the signal with very short AE count, and this signal possibly can be filtered by front end filter setting of the channel count with low level of 4 and high level of $10^8$. The other EMI signal occurred from CH 1, CH 3 and CH 10, and had high and constant duration with high energy and count (maximun duration > $10^5\;{\mu}s$), and has characteristic gradient of accumulation amplitude distribution. This signal should be removed in the AE signal evaluation by filtering, because this may affect to the total gradient.

Taguchi Method를 이용한 모바일 폰용 마이크로스피커의 음향 특성 향상 설계 (Application of Taguchi Method to Robust Design of Acoustic Performance in Mobile Phones)

  • 이홍주;황건용;황상문;권중학;김태순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.493-496
    • /
    • 2005
  • With the growth in electronics and the remarkable advance in wireless communication technology, mobile devices, such as mobile phones and PDAs are incessantly improved in their diverse functional performance. Lighter weight and smaller size has been gradually accomplished by recent circuit integration technology resulting in rapid growth in the number of mobile phone subscribers. Driven by customer demand, recent mobile devices are fully capable of realizing a variety of dazzling multimedia effects powered by electro-acoustic parts that have become one of the generic components. However, this paper also presents an oval micro-speaker, that is expected to show an excellent performance within limited space of mobile phone, and its performance design has been suggested as well. Finally, a statistical approach to achieve high characteristic and performance is suggested by Taguchi method to identify a certain relationship between a mobile phone and a micro-speaker.

  • PDF

Identification of failure mechanisms for CFRP-confined circular concrete-filled steel tubular columns through acoustic emission signals

  • Li, Dongsheng;Du, Fangzhu;Chen, Zhi;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.525-540
    • /
    • 2016
  • The CFRP-confined circular concrete-filled steel tubular column is composed of concrete, steel, and CFRP. Its failure mechanics are complex. The most important difficulties are lack of an available method to establish a relationship between a specific damage mechanism and its acoustic emission (AE) characteristic parameter. In this study, AE technique was used to monitor the evolution of damage in CFRP-confined circular concrete-filled steel tubular columns. A fuzzy c-means method was developed to determine the relationship between the AE signal and failure mechanisms. Cluster analysis results indicate that the main AE sources include five types: matrix cracking, debonding, fiber fracture, steel buckling, and concrete crushing. This technology can not only totally separate five types of damage sources, but also make it easier to judge the damage evolution process. Furthermore, typical damage waveforms were analyzed through wavelet analysis based on the cluster results, and the damage modes were determined according to the frequency distribution of AE signals.

A preliminary study on seabed classification using a scientific echosounder

  • FAJARYANTI, Rina;KANG, Myounghee
    • 수산해양기술연구
    • /
    • 제55권1호
    • /
    • pp.39-49
    • /
    • 2019
  • Acoustics are increasingly regarded as a remote-sensing tool that provides the basis for classifying and mapping ocean resources including seabed classification. It has long been understood that details about the character of the seabed (roughness, sediment type, grain-size distribution, porosity, and material density) are embedded in the acoustical echoes from the seabed. This study developed a sophisticated yet easy-to-use technique to discriminate seabed characteristics using a split beam echosounder. Acoustic survey was conducted in Tongyeong waters, South Korea in June 2018, and the verification of acoustic seabed classification was made by the Van Veen grab sampler. The acoustic scattering signals extracted the seabed hardness and roughness components as well as various seabed features. The seabed features were selected using the principal component analysis, and the seabed classification was performed by the K-means clustering. As a result, three seabed types such as sand, mud, and shell were discriminated. This preliminary study presented feasible application of a sounder to classify the seabed substrates. It can be further developed for characterizing marine habitats on a variety of spatial scales and studying the ecological characteristic of fishes near the habitats.

음향방출 기술을 이용한 철근콘크리트 보의 휨 파괴 손상평가 (Damage Assessment of Reinforced Concrete Beams Under Flexural Failure Mode Using Acoustic Emission Testing)

  • 김다위;이성로;박원석
    • 한국안전학회지
    • /
    • 제38권2호
    • /
    • pp.36-43
    • /
    • 2023
  • In this study, a four-point bending test was conducted to assess and detect the damage to reinforced concrete structures using the acoustic emission (AE) technique. Based on the crack investigation results, flexural failure was classified into four stages and compared with the characteristic analysis results of AE parameters. The parametric characterization indicated that the activity of the primary AE signal was high in the early stage, and that of the second signal increased after the flexural cracks stabilized. Because the secondary AE signal included noise generated by friction, parameter-based analysis for damage assessment was performed using the primary signal; the secondary signal was used as complement. The activity analyses of the primary and secondary signals effectively classified crack propagation; however, determining the macrocracks and yielding of reinforcing bars had certain limitations. Nevertheless, applying the damage index with cumulative AE energy is a complementary technique for detecting and assessing structure damage that well detects the occurrence of macrocracks.

음향방출 신호의 검출을 위한 공진형 및 광대역 센서 제작과 특성평가 (Development and Characterization of High-Performance Acoustic Emission Sensors)

  • 김병극;김영환
    • 비파괴검사학회지
    • /
    • 제12권4호
    • /
    • pp.9-17
    • /
    • 1993
  • Three types of piezoelectric sensors to detect acoustic emission signals were developed and characterized. Epicentral displacement and velocity of a plate to have infinite boundary were calculated by convolution between a Green's function and a simulated source time function to show parabolic rising characteristic. The sensor calibration system set up was composed of a steel plate, a glass capillary, an indentor and a load cell indicator The transient elastic signals were detected by the sensors. The results were compared with the theoretical results and Fast Fourier Transformed. As the results, the sensor fabricated using a disk shape of a piezoelectric PZT element showed resonant characteristics. The sensors fabricated using a conical shape PZT element and a PVDF polymer film showed the wide band characteristics for particle displacement and velocity, respectively. The calculated results showed good agreements with the transient responses in the cases of the wide band sensors and it was confirmed that the simulated source time function had been properly assumed.

  • PDF

저압배관용 폴리에틸렌의 인장시험시 발생한 음향방출 특성 (AE Characteristic under Tensile of Polyethylene for Low Pressure Pipe)

  • 이시윤;정정환;안석환;남기우
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.82-85
    • /
    • 2003
  • This study is to look at the effect for deformation of Polyethylene, on the wave forms produced by tensile test. Signals collected were then classified visually into three types according to their shapes in the time and frequency domain. Each type should contain signals which could be correlated to a certain micro failure mechanism that occurs during the tensile process. The result showed that the acoustic emission method could be effectively used for analysis of fracture mechanism in Polyethylene structures.

  • PDF

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF

자왜 Tonpilz 변환기의 음향특성 해석 프로그램 개발 (Program Development for the Underwater-Acoustic Characteristic Analysis of Magnetostrictive Tonpilz Transducer)

  • 정은미;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.705-710
    • /
    • 2002
  • Magnetostrictive materials are used low frequency sonar transmitter instead of piezoelectric materials. But it is difficult to analyze due to the nonlinearity and hysteresis of magnetostrictive materials. This paper deals with the program development for the finite element modeling of magnetostrictive tonpilz transducers and for analyzing their acoustic characteristics. To take into account the nonlinearity of magnetostrictive materials, the magnetic field calculation is separated form the displacement calculation, and a curve fitting is adopted for the nonlinear behavior of the magnetic and mechanical strain fields. At first, the magnetic field is obtained by using a commercial FEM software and the displacement of the transducer is calculated by plugging the obtained magnetic field into forcing term. To verity the accuracy of the developed program, a comparison is made with a commercial code, ATILA.

  • PDF