• Title/Summary/Keyword: acoustic axis

Search Result 118, Processing Time 0.03 seconds

An Experimental Study on Shape Oscillation Mode of a Pendant Droplet by an Acoustic Wave (음향 가진을 이용한 매달려 있는 액적의 형상 진동 모드에 관한 실험적 연구)

  • Kang Byung-Ha;Moon Jong-Hoon;Kim Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.523-530
    • /
    • 2006
  • One of the fascinating prospects is the possibility of new hydrodynamics technology on micro-scale system since oscillations of micro-droplets are of practical and scientific importance. It has been widely conceived that the lowest oscillation mode of a pendant droplet is the longitudinal vibration, i.e. periodic elongation and contraction along the longitudinal direction. Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. The rotation of the droplet about the longitudinal axis is the oscillation mode of the lowest resonance frequency. This rotational mode can be invoked by periodic acoustic forcing and is analogous to the pendulum rotation. It is also found that the natural frequency of a pendant droplet is independent of the drop density and surface tension but inversely proportional to the square root of the droplet size.

A Study on Prediction of Acoustic Loads of Launch Vehicle Using NURBS Curve Modeling (넙스(NURBS) 곡선 모델링을 이용한 발사체 음향하중 예측에 대한 연구)

  • Park, Seoryong;Kim, Hongil;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.106-113
    • /
    • 2018
  • The Intense acoustic wave generated by the jet flame at the lift-off causes the vehicle to vibrate in the form of acoustic loads. The DSM-II(Distributing Source Method-II), which is a representative empirical acoustic loads prediction method, is a method of distributing a noise source along a jet flame axis and has advantages in calculation cost and accuracy. However, due to the limitation of the distributing method, there is a limit to accurately reflect the various launch pad configurations. In this study, acoustic loads prediction method which can freely distribute noise sources is studied. by introducing NURBS(Non-Uniform Rational B-Spline) modeling into empirical prediction method. For the verification of the newly introduced analytical technique of the NURBS, the acoustic loads prediction for the Epsilon rocket's low-noise launch pad shape was performed and the results of the analysis were compared with the existing prediction methods and experimental results.

A Numerical Study on Analysis of Low Frequency Aero-acoustic Noise for a HAWT of NREL Phase VI (NREL Phase VI 수평축 풍력터빈의 저주파 공력소음 해석에 관한 수치적 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1170-1179
    • /
    • 2009
  • The purpose of this work is to predict the low frequency aero-acoustic noise generated from the horizontal axis wind turbine, NREL Phase VI for the whole operating conditions of various wind speeds using large eddy simulation and Ffowcs-Williams and Hawkings model provided in the commercial code, FLUENT. Because there is no experimental data about wind turbine noise, we first of all compared aerodynamic performance such as shaft torque and power with experimentally measured value. Performance results show a good agreement with experimental data within about 0.8%. As the wind speed increases, the overall sound pressure level and the sound pressure level by the quadrupole and dipole source show a increasing tendency. Also, sound pressure level is proportional to $r^{-2}$ in the near field and $r^{-1}$ in the far field according to the increase of distance from the center of hub of wind turbine. According to 2 times increase of distance, sound pressure level is reduced by about 6dB.

Performance Analysis of OFDM-based Underwater Acoustic Communication System by Repeated Transmit Diversity Technique (반복 전송 다이버시티 기법에 따른 OFDM 기반 수중 음향 통신 시스템의 실해역 성능 분석)

  • Chae, Kwang-Young;Ko, Hak-Lim;Kim, Min-Sang;Cho, Yong-Ho;Im, Tae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1434-1442
    • /
    • 2019
  • In this paper, the channel change was continuously measured for 24 hours from July 5, 2017 on the coast near Deokjeok-do, Incheon. The underwater channel has various channel environment characteristics as the change in the time axis and the change in the frequency axis occurs in real time, and the underwater communication performance decreases due to the multipath fading and the Doppler effect. Therefore, in this study, we performed the OFDM system performance analysis in the underwater channel environment by applying the repetitive transmission diversity scheme in the time and frequency domain to improve the communication performance in the real-world underwater communication environment. Using the collected data, we compared the channel environment in the time and frequency domain and analyzed the BER performance according to the pilot spacing and the number of repetitive transmissions in the time and frequency axis.

A Study of the Crystallographic Properties of $ZnO/SiO_{2}/Si$ Thin Film for FBAR (FBAR 용 $ZnO/SiO_{2}/Si$ 박막의 결정학적 특성에 관한 연구)

  • Keum, Min-Jong;Yun, Youn-So;Choi, Myung-Gyu;Chu, Soon-Nam;Choi, Hyung-Wook;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.140-143
    • /
    • 2002
  • In this study, we prepared ZnO/glass and $ZnO/SiO_{2}/Si$ thin film by Facing Targets Sputtering (FTS) system for Film Bulk Acoustic Resonator (FBAR). When the ZnO thin film applied to piezoelectric thin film, it requires good c-axis preferred orientation. And c-axis orientation has a remarkable difference with preparation conditions. Therefore, c-axis orientation must be significantly evaluated according to changing deposition conditions. Moreover, in order to prepare ZnO thin film with good crystallographic properties and progressive of efficiency of product process, the ZnO thin film should have to prepared as low temperature as possible. In this work, we prepared ZnO thin films on slide glass and $SiO_{2}/Si$ substrate. And the crystallographic characteristics of ZnO thin films on sputtering conditions were investigated by alpha-step and X-ray diffraction.

  • PDF

Torque Ripple Reduction Algorithm of PM Synchronous Motor at High Speed Operation (영구자석 동기 전동기의 고속운전 시 토크리플 저감 알고리즘)

  • Kim, Jong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.429-436
    • /
    • 2015
  • Torque ripples generate mechanical vibration at low speed and acoustic noise at high speed. The back emf harmonics of a PM synchronous motor is one of the main sources of torque ripples. To reduce torque ripples resulting from back emf harmonics, dq-axis harmonic currents that reduce the torque ripples are generally compensated to the current controller. Harmonic current compensation is effective at low speed, but it is not applicable at high speed because of the limited bandwidth of the current controller. In this study, dq-axis harmonic voltage compensation that can reduce torque ripples at high speed is proposed. The dq-axis harmonic voltages are calculated from the motor speed and the dq-axis harmonic currents. The effectiveness of the proposed method in reducing torque ripple is verified by a simulation and experiments.

A Study or the Crystallographic Properties or ZnO/SiO2/Si Thin Film for FBAR (FBAR용 ZnO/SiO2Si 박막의 결정학적 특성에 관한 연구)

  • 금민종;손인환;최명규;추순남;최형욱;신영화;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.711-715
    • /
    • 2003
  • In this study, we prepared ZnO/glass and ZnO/SiO$_2$/Si thin film by Facing Targets Sputtering (FTS) system for Film Bulk Acoustic Resonator (FBAR). When the ZnO thin film applied to piezoelectric thin film, it requires good c-axis preferred orientation. And c-axis orientation has a remarkable difference with preparation conditions. Therefore, c-axis orientation must be significantly evaluated as a function of deposition conditions. Moreover, in order to prepare ZnO thin film with good crystallographic properties and progressive of efficiency of product process, the ZnO thin film should be prepared as low temperature as possible. In this work, we prepared ZnO thin films on slide glass and SiO$_2$/Si substrate. And the crystallographic characteristics of ZnO thin films on sputtering conditions were investigated by alpha-step and X-ray diffraction.

An analysis of port-starboard discrimination performance for roll compensation at acoustic vector sensor arrays (음향 벡터 센서 배열의 뒤틀림 보상을 통한 좌현-우현 구분 성능분석)

  • Lee, Ho Jin;Ryu, Chang-Soo;Bae, Eun Hyon;Lee, Kyun Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.403-409
    • /
    • 2016
  • Traditional towed line arrays using omni-directional sensor suffer from the well known port-starboard ambiguity, because the direction of arrival is determined by conic angle. The operational method and structure of the sensor arrays method have been proposed to solve this problem. Recently, a lot of research relating to the acoustic vector sensor are studied. In this paper, we study port-starboard discrimination for roll of acoustic vector sensor array. With one omni-directional sensor and three orthogonally-placed directional sensors, an acoustic vector sensor is able to measure both the acoustic pressure and the three directional velocities at the point of the sensor. The wrong axis due to the roll at directional sensors can degrade performance of beamforming. We investigate port-starboard discrimination for roll of sensor array and confirm the validity of performance of beamforming with compensated the roll.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Frequency Characteristics of a FBAR using ZnO Thin Film (ZnO 압전박막을 이용한 FBAR의 주파수 응답특성)

  • Do, Seung-Woo;Jang, Cheol-Yeong;Choi, Hyun-Chul;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.94-97
    • /
    • 2003
  • This study uses ZnO thin film as a piezoelectric material and Pt as bottom electrode for FBAR (film bulk acoustic resonator) device. ZnO thin film and Pt were deposited by RF-magnetron sputtering method. ZnO thin film and Pt were oriented to c-axis. Top electrode Al was deposited by thermal evaporation. The membrane was formed of bulk micromachining. The FBAR was evaluated by XRD, SEM and electrical characterization. The resonant frequency was measured by HP 8753C Network Analyzer. A fabricated FBAR device exhibited a resonant frequency of 700 MHz ~ 1.5 GHz. When bottom electrode and top electrode thickness were fixed, the resonant frequency was increased as decreasing ZnO thin film thickness.

  • PDF