• Title/Summary/Keyword: acoustic

Search Result 8,248, Processing Time 0.033 seconds

Relationship between Fatigue Crack Growth Rate and Total Acoustic Emission Counts per Cycle (피로균열 성장률과 싸이클당 AE수 증가율간의 상호관계)

  • Kang-Yong,Lee;Hyung-Kyu,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.3
    • /
    • pp.17-26
    • /
    • 1986
  • A new relationship between total acoustic emission counts per cycle and crack growth rate is derived in terms of stress intensity factor to explain the acoustic emission behavior due to fatigue crack growth. The experimental results of the total acoustic emission counts per cycle obtained from aluminium 5,000 series alloy specimens are compared with the theoretical values. Both experimental and theoretical total acoustic emission counts per cycle result in the linear relationship to the crack length.

  • PDF

Time harmonic wave propagation in a nonhomogeneous medium

  • Anar, I.Ethem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.177-186
    • /
    • 1996
  • Colton and Wendland [1] have considered acoustic wave propagations in a spherically symmetric medium. They used constructive method for in a spherically symmetric medium. They used constructive method for solving the exterior Neumann problem. Jones [2] has derived an integral equation for the exterior acoustic problem. Jones has also discussed analytical and numerical solution of the acoustic problem.

  • PDF

Wave Propagation Characteristics of Acoustic Metamaterials with Helmholtz Resonators (헬름홀츠 공명기들로 구성된 음향 메타물질의 파동전파 특성)

  • Kwon, Byung-Jin;Jo, Choonghee;Park, Kwang-Chun;Oh, Il-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.167-175
    • /
    • 2013
  • The wave propagation characteristics of an acoustic metamaterial composed of periodically repeated one-dimensional Helmholtz resonator array was investigated considering the effects of dimensional changes of the resonator geometry on the transmission coefficient and band gap. The effective impedance and transmission coefficient of the acoustic metamaterials are obtained based on the acoustic transmission line method. The designed acoustic metamaterials exhibit band gaps and negative bulk modulus that are non-existent properties in the nature. The band gap of the acoustic metamaterial is strongly dependent on the geometry parameters of Helmholtz resonators and lattice spacing. Also, a new type of metamaterial that is periodically constructed with two different resonators was designed to open the local resonance band gap without change of Bragg scattering.

Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method (3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석)

  • Kim, Sung-Hee;Hong, Suk-Yoon;Kil, Hyun-Gwon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

Glottal Characteristics of Word-initial Vowels in the Prosodic Boundary: Acoustic Correlates (운율경계에 위치한 어두 모음의 성문 특성: 음향적 상관성을 중심으로)

  • Sohn, Hyang-Sook
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.47-63
    • /
    • 2010
  • This study provides a description of the glottal characteristics of the word-initial low vowels /a, $\ae$/ in terms of a set of acoustic parameters and discusses glottal configuration as their acoustic correlates. Furthermore, it examines the effect of prosodic boundary on the glottal properties of the vowels, seeking an account of the possible role of prosodic structure based on prosodic theory. Acoustic parameters reported to indicate glottal characteristics were obtained from the measurements made directly from the speech spectrum on recordings of Korean and English collected from 45 speakers. They consist of two separate groups of native Korean and native English speakers, each including both male and female speakers. Based on the three acoustic parameters of open quotient (OQ), first-formant bandwidth (B1), and spectral tilt (ST), comparisons were made between the speech of males and females, between the speech of native Korean and native English speakers, and between Korean and English produced by native Korean speakers. Acoustic analysis of the experimental data indicates that some or all glottal parameters play a crucial role in differentiating the speech groups, despite substantial interspeaker variations. Statistical analysis of the Korean data indicates prosodic strengthening with respect to the acoustic parameters B1 and OQ, suggesting acoustic enhancement in terms of the degree of glottal abduction and the glottal closure during a vibratory cycle.

  • PDF

Effect of Gas-Liquid Scheme Injector on Acoustic Damping in Liquid Rocket Engine (액체 로켓엔진 분사기의 음향감쇠 효과에 관한 수치적 연구)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.79-86
    • /
    • 2005
  • The role of the injector as an acoustic resonator is studied for the high performance rocket engine adopting the gas-liquid scheme injector. Acoustic behavior in the combustor with single injector is investigated numerically adopting linear acoustic analysis for cold condition. Acoustic-damping effect of the injector is evaluated by damping factor as a function of the injector length. From the numerical results, it is found that the injector can play a significant role in acoustic damping and the optimum length of the injector corresponds to half of a full wavelength of the longitudinal mode with the acoustic frequency to be damped in the chamber. In baffled chamber, the optimum lengths of the injector are calculated as a function of baffle length for both cold and hot conditions.

Derivation of Acoustic Target Strength Equation Considering Pulse Type of Acoustic Signal (펄스 타입의 음향신호를 고려한 음향표적강도 이론식 개발)

  • Kim, Ki-June;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.812-819
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. This research provides the time pattern of TS in time domain, which is applicable to pulse modulated acoustic pressure field. If the time pattern of TS is predicted by using TS equation in frequency domain, it takes long time and difficult since time function pulsed acoustic wave may be decomposed into their frequency domain components. But TS equation in time domain has a convenience. If the expression for pulsed acoustic field has been obtained, the problem can be solved. Furthermore this paper introduces about mathematical equivalence quantities between EM wave and Acoustic Wave.

  • PDF

Evaluation on Architectural Acoustic Performance of Small-scaled Multipurpose Hall for Improvement of Acoustic Performance (음향성능 개선을 위한 소규모 다목적홀의 건축음향성능 평가)

  • Yun, Jae-Hyun;Ju, Duck-Hoon;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.226-230
    • /
    • 2007
  • In case of domestic performance hall, it is real situation that the demand of multipurpose hall that accommodative a lecture, gathering activity, drama and concert than a professional performance hall such as opera house, is on increasing. Accordingly, since such multipurpose hall, in view of its characteristics, is emphasizing the clearness of sound, also it requiring the repletion or abundance of sound simultaneously, it could be said that the sufficient examination and plan with regard to the architectural acoustics design is indispensable. However, since most of multipurpose hall has ever been designed and constructed without any consideration on an acoustic factor, many problem points are generating. Standing on such viewpoint, this Research has measured the physical acoustic characteristics about the small-scaled multipurpose hall recently built without any acoustic consideration, and through the above, tried to grasp the acoustic defect and controversial point thereof. It is deemed that such study result could be utilized as an important material for improvement the acoustic performance of the multipurpose hall.

  • PDF

One-dimensional Topology Optimization for Transmission Loss Maximization of Multi-layered Acoustic Foams (전달손실 최대화를 위한 공기-흡음재 배열 최적설계)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June;Kim, Eun-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.938-941
    • /
    • 2006
  • We present a new design method of one-dimensional multi-layered acoustic foams for transmission loss maximization by topology optimization. Multi-layered acoustic foam sequences consisting of acoustic air layers and poroelastic material layers are designed for target frequency values. For successful topology optimization design of multi-layered acoustic foams, the material interpolation concept of topology optimization is adopted. In doing so, an acoustic air layer is modeled as a limiting poroelastic material layer; acoustic air and poroelastic material are handled by a single set of governing equations based on Biot's theory. For efficient analysis of a specific multi-layered foam appearing during optimization, we do not solve the differential equations directly, but we use an efficient transfer matrix approach which can be derived from Biot's theory. Through some numerical case studies, the proposed design method for finding optimal multi-layer sequencing is validated.

  • PDF