• Title/Summary/Keyword: acinetobacter sp

Search Result 132, Processing Time 0.068 seconds

In vitro Evaluation of Antimicrobial Agents Susceptibility Against Several Clinical Isolates (임상 분리 균주의 항생제 감수성 유형)

  • 최성숙;하남주
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.128-130
    • /
    • 1999
  • In vitro activity of commonly used antimicrobial agents against several clinical isolates were studied. In the case of E. coli, the MICs at which 90% of the bacteria are inhibited of ampicillin, Unasyn, cefazoline, cefotaxim, carbenicillin, gentamicin and ofloxacin were 100<, 100, 25, 0.2, 100<, 3.13, and $12.5{\;}\mu\textrm{g}/m$ , respectively. In the case of K . pneumoniae, the MICs at which 90% of the bacteria are inhibited of ampicillin, Unasyn, crfazoline, cefotaxim, carbenicillin, gentamicin and ofloxacin were 100<, 12.5, 100<, 0.1, 100<, 1.6, and $0.4{\;}\mu\textrm{g}/m$ , respectively. In the case of Enterobacter sp, the MICs at which 90% of the bacteria are inhibited of ampicillin, Unasyn, cefazoline, cefotaxim, carbenicillin, gentamicin and ofloxacin were 100<, 100, 100<, 6.25, 100<, 100 and $1.57{\;}\mu\textrm{g}/m$ , respectively. In the case of Acinetobacter sp, the MICs at which 90% of the bacteria are inhibited of ampicillin, Unasyn, cefazoline, cefotaxim, carbenicillin, gentamicin and ofloxacin were 100<, 100<, 100<, 100<, 100< 100< and $50{\;}\mu\textrm{g}/m$ , respectively. In the case of Pseudomonas sp, the MICs at which 90% of the bacteria are inhibited of ampicillin, Unasyn, cefazoline, cefotaxim, carbenicillin, gentamicin and ofloxacin were 100<, 100<, 100<, 50, 100<, 25 and $25{\;}\mu\textrm{g}/m$, respectively. In the case of S. aureus, the MICs at which 90% of the bacteria are inhibited of ampicillin, Unasyn, cefazoline, cefotaxim, carbenicillin, gentamicin and ofloxacin were 50, 50, 100<, 100<, 50, 50, and $100{\;}\mu\textrm{g}/m$, respectively.

  • PDF

Pesticide Degradation Activity of Several Isolates of Soil Bacteria and Their Identification (토양에서 분리한 수종 세균의 농약분해력 검정 및 동정)

  • Park, Kyung-Hun;Lee, Young-Kee;Lee, Su-Heon;Park, Byung-Jun;Kim, Chan-Sub;Choi, Ju-Hyeon;Uhm, Jae-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.138-148
    • /
    • 2006
  • Two bacteria were isolated from the continuously pesticide-used soil under plastic film house and upland condition. The degradation test of several pesticides by the selected bacteria, B59 and B71, were conducted. The degradation rates for 6 pesticides, procymidone, chlorothalonil, ethoprophos parathior, alachlor and pendimethalin, in medium by the isolates were 21.1% to 53.2% higher than non-inoculated medium. Under shaking culture condition, 90% to 95% of procymidone was degraded after 21 days treatment. Parathion was degraded in the range of 60% to 100% by B71 and B59, respectively. Otherwise 70% of alachlor was degraded by the two isolated bacteria during same period. The pH was not significantly affected for degradation of pesticides. The bacterial strains, B59 and B71 was identified as Acinetobacter sp. and as Pseudomonas sp. based on morphological, biochemical and physiological characteristics, and identity and similarity of automatic identification system, Biolog and MIDI.

Characterization of Bunker Oil-Related Compounds Degrading Bacteria Isolated from Pusan Coastal Waters (부산근해에서 분리한 Bunker Oil 관련화합물 분해세균의 특성)

  • Choi, Jin;Kim, Jong-Goo;Park, Geun-tae;Son, Hong-Joo;Kim, Hee-Gu;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.451-456
    • /
    • 1999
  • Microorganisms utilizing petroleum as substrate were screened from the seawater in Pusan coastal area. Among them, fifty strains utilized bunker-A oil as a sole carbon and energy source. Five of these fifty strains were selected to experiment this study. According to the taxonomic characteristics of its morphological, cultural and biochemical properties, the selected stains were named Pseudomonas sp. EL-12, Flavobacterium sp. EL-15, Acinetobacter sp. EL-18, Enterobacter sp. EL-27 and Micrococcus sp. EL-43, respectively. The optimal medium compositions and cultural conditions for assimilation of bunker-A oil by the selected strains were 1.5-2% bunker-A oil, 0.1% $NH_4NO_3$, 1-1.5% $MgSO_4$.$7H_2O$, 0.05-0.15% KCl, 0.1-0.15% $CaCl_2$.$2H_2O$, 2.5-3.5% NaCl, initial pH 8-9, temperature 3$0^{\circ}C$ and aeration, respectively. The utilization and degradation characteristics on the various hydrocarbons by the selected stains were showed that bunker oil, n-alkane and branched alkane compounds were highly activity than cyclic alkane and aromatic hydrocarbon compounds.

  • PDF

Antibacterial Activity of Bacillus sp. DH-9 Isolated from Sea Water (해수 분리 세균 Bacillus sp. DH-9의 항균활성)

  • Kim, Young-Man;Kim, Do-Kyun;Kim, Nam-Hee;Byun, Tae-Hwan;Kim, Ah-Ra;Lee, Eun-Woo;Kwon, Hyun-Ju;Kim, Byung-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Emerging of antibiotic resistance of pathogenic bacteria is now a very serious problem in the clinics to treat the diseases, which have been easy to cure by antibiotic treatments before. Unfortunately, antibiotics developed till now are not effective any more against the resistant bacteria. Lots of efforts to discover new antibiotics having novel and unique structures and functions are really urgent and undergoing in the whole world. In this study, we tried to screen and isolate Same unique bacterial strains producing antibacterial substances from the sea water, which is the poor environment for bacteria 10 make their growing. Three bacterial strains among 916 strains isolated showed inhibition clear zone on the marine agar plate growing pathogenic bacteria including Acinetobacter baumannii, Edwardsiella tarda, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica. One of them, which was identified as Bacillus sp. DH-9 from 16S rRNA gene analysis, showed especially considerable antibacterial activity against S. aureus which is notorious for methicillin resistant S. aureus (MRSA). The growth of S. aureus was totally inhibited when the supernatant of Bacillus sp. DH-9 culture was treated on.

Isolation and Identification of the Origins Causing the Slime Found in Pulp and Paper Making Processes (제재공장내 슬라임 발생원의 분리와 동정)

  • Oh, Jung-Soo;Jo, Byoung-Muk;Kim, Eun-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.50-57
    • /
    • 1997
  • The presence of slime in paper mills is practically universal. Many researches have been performed for many years to resolve the problem caused by the slime in pulp and paper mill. Many papers have been published to show the bacteria is a major cause of paper mill slime. Now that the recycling of the water has been increased and the regulations of a toxic chemical dosage have become more strengthen, the importance of the control of slime in pulp and paper mill recently has been more recognized. Therefore, to produce quality products at the lowest economic and environmental costs, a through study of the microbial ecology and the indentification of troublesome slime-forming bacteria is a quite necessary. The purpose of this paper is to indentify slime~forming bacteria isolated from the papermaking process. The samples were taken from four parts of making fine paper : machine chest, head box, wire part, white water tank. Machine chest showed the most numbers of bacteria, numbering $2.55{\times}10^7$. The different colony types were taken from the 105 dilution plate. Nine bacteria were identified u sing the Biolog system and the vitek system: 6 gram-negative bacteria, 3 gram-positive bacteria. They are Pseudomonas paucimobilis B., Staphylococcus sp., Acinetobacter calcoaceticus., Pseudomonas cepacia, Actinobaci1lus capsulatus, Acidovorax sp., Flavobacterium sp., and Staphylococcus auricularis in addition to one unidentified sp., Among them. Pseudomonas paucimobillis was found in all places where the samples were taken. And, each parts had the different predominant bacteria in it : Pseudomonas paucimobilis B. in machine chest, Acinetobactor calcoaceticus. in Wire Part and Staphylococcus sp. in head box.

  • PDF

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • Park, Dong-Woo;Kim, Youngsoo;Lee, Sang-Mahn;Ka, Jong-Ok;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.275-280
    • /
    • 2000
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as rarbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

  • PDF

Effect of Thermophilic Bacteria on Degradation of Food Wastes (음식물 쓰레기 분해에 대한 고온성 미생물의 영향)

  • Yi, Hwe-Su;Jeong, Ji-Hyung;Park, Yu-Mi;Seul, Keyung-Jo;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.363-367
    • /
    • 2006
  • Food wastes were decomposed into the Mugri (Isung Engineering, Korea), a food waste reduction machine, with adding sawdust of cryptomeria. Degradation effects were better when the machine worked at over 45$^{\circ}C$ than those at the lower temperature. Thermophilic bacteria were isolated from cryptomeria sawdust and the food waste products degraded by the machine. The isolates from cryptomeria sawdust were classified into 3 genera (Acinetobacter baumannii, Enterobacter sp. and Erwinia cypripedii) and almost all the isolates from the degraded products were partially identified as Bacillus sp. by 16S rDNA sequence analysis. The isolated thermophilic bacteria showed degradative enzyme activities. In the case of addition of the 30 thermophilic bacteria into the machine, degradation rate of food wastes was almost twice as high with increasing process temperature up to 6$^{\circ}C$.

Pathogenic bacteria causing rot in commercial soybean sprout cultivation

  • Yun, Sung-Chul;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • Soybean sprout pathogenic bacteria were isolated from the large, deep containers of a commercial factory. Over a period of one year, 40 pathogenic-like bacteria were isolated among a total of 732 isolates. In addition to bacteria previously reported to be associated with rotting, such as Pseudomonas putida and Erwinia carotovora, several other genera were also identified: Acinetobacter spp., Chryseobacterium spp., Klebsiella sp., Pantoea agglomerans, Bacillus sp. Fatty acid methyl ester (FAME) analysis using the Microbial ID (MIDI) system, and 16s rRNA sequence analysis, yielded identical results, confirming the identities of these microorganisms. Several types of selective media were not good for identification and determination of population structure in commercial environments, as colony type was not specific to the genus. There was no dominant bacterium, and we were not able to find the main bacterium responsible for soybean spout rot. Even though we did not identify a major target for controlling rot or screening for resistant cultivars, the results of this study indicated that bacterial rot of soybean sprout is endemic. In addition, it emerged that factory epidemics in summer are not caused by the bacteria isolated in this study.

The Biodegradation of Mixtures of Benzene,Phenol,and Toluene by Mixed and Monoculture of Bacteria (단일배양 및 혼합배양에 의한 Benzene, Phenol 및 Toluene 혼합물의 생분해)

  • Lee, Chang-Ho;Oh, Hee-Mock;Kwon, Tae-Jong;Kwon, Gi-Seok;Kim, Seong-Bin;Kho, Yung-Hee;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.685-691
    • /
    • 1994
  • The biodegradation of aromatic compounds by mixed and monoculture was investigated in an artificial wastewater containing 500 mg/l of benzene(B), phenol(P), and toluene(T) in various combinations. None of three strains utilized P-xylene(X) as a carbon source, but they grew well on p-xylene in mixtures with benzene and toluene. In the mixed culture on mixed substrate, the length of lag phase was different depending on the nature of mixture. Cell growths of Flavobac- terium sp. BEN2 and Acinetobacter sp. GEM63 were inhibited in the presence of a 500 mg/l of phenol. When the mixed culture of three strains was cultured in a bench-scale reactor containing artificial wastewater, each of benzene, phenol, and toluene was not detected at 30 hrs, 50 hrs, and 12 hrs after incubation in the treatment. The removal rates of COD$_{t}$(total COD) and COD$_{s}$,(soluble COD) of upper phase after centrifugation during early 50 hrs were ca. 80% and ca. 93.8%, respectively.

  • PDF

Isolation and Identification of Pseudomonas Utilizing Hydrocarbon (탄화수소를 자화하는 Pseudomonas의 분리동정)

  • Kim, Jeong-Kook;Lee, Yung-Nok
    • Korean Journal of Microbiology
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 1984
  • 238 strains of bacteria were isolated from sewage and soil samples collected mainly in Seoul and its suburbs by enrichment culture on crude oil or hydrocarbon minimal medium. Of the isolates, 68 strains were tentatively identified as the genus Pseudomonas, 11 strains as Alcaligenus, and 10 strains as Acinetobacter. Of the 68 strains of Pseudomonas sp., 35 strains were identified as P. aeruginosa, 5 strains as P. fluorescence, 10 strains as P. putida, and 2 strains as P. mendocina.

  • PDF